IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v221y2022ics0951832021006931.html
   My bibliography  Save this article

Decision-theoretic reliability sensitivity

Author

Listed:
  • Straub, Daniel
  • Ehre, Max
  • Papaioannou, Iason

Abstract

We propose and discuss sensitivity metrics for reliability analysis, which are based on the value of information. These metrics are easier to interpret than other existing sensitivity metrics in the context of a specific decision and they are applicable to any type of reliability assessment, including those with dependent inputs. We develop computational strategies that enable efficient evaluation of these metrics, in some scenarios without additional runs of the deterministic model. The metrics are investigated by application to numerical examples.

Suggested Citation

  • Straub, Daniel & Ehre, Max & Papaioannou, Iason, 2022. "Decision-theoretic reliability sensitivity," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:reensy:v:221:y:2022:i:c:s0951832021006931
    DOI: 10.1016/j.ress.2021.108215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021006931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emanuele Borgonovo, 2017. "Value of Information," International Series in Operations Research & Management Science, in: Sensitivity Analysis, chapter 0, pages 93-100, Springer.
    2. Mark Strong & Jeremy E. Oakley & Alan Brennan & Penny Breeze, 2015. "Estimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 35(5), pages 570-583, July.
    3. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    4. Bjørnsen, Kjartan & Selvik, Jon Tømmerås & Aven, Terje, 2019. "A semi-quantitative assessment process for improved use of the expected value of information measure in safety management," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 494-502.
    5. Chabridon, Vincent & Balesdent, Mathieu & Bourinet, Jean-Marc & Morio, Jérôme & Gayton, Nicolas, 2018. "Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 164-178.
    6. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    7. Mark Strong & Jeremy E. Oakley & Alan Brennan, 2014. "Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 34(3), pages 311-326, April.
    8. James C. Felli & Gordon B. Hazen, 1998. "Sensitivity Analysis and the Expected Value of Perfect Information," Medical Decision Making, , vol. 18(1), pages 95-109, January.
    9. Sarazin, Gabriel & Morio, Jérôme & Lagnoux, Agnès & Balesdent, Mathieu & Brevault, Loïc, 2021. "Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Kim, Taeyong & Song, Junho, 2018. "Generalized Reliability Importance Measure (GRIM) using Gaussian mixture," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 105-115.
    11. Alan Brennan & Samer Kharroubi & Anthony O'Hagan & Jim Chilcott, 2007. "Calculating Partial Expected Value of Perfect Information via Monte Carlo Sampling Algorithms," Medical Decision Making, , vol. 27(4), pages 448-470, July.
    12. Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
    13. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    14. Malings, Carl & Pozzi, Matteo, 2016. "Value of information for spatially distributed systems: Application to sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 219-233.
    15. Pozzi, Matteo & Malings, Carl & Minca, Andreea, 2020. "Information avoidance and overvaluation under epistemic constraints: Principles and implications for regulatory policies," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    16. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "A framework for global reliability sensitivity analysis in the presence of multi-uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    17. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    18. Papaioannou, Iason & Straub, Daniel, 2021. "Variance-based reliability sensitivity analysis and the FORM α-factors," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    19. Emanuele Borgonovo & Alessandra Cillo, 2017. "Deciding with Thresholds: Importance Measures and Value of Information," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1828-1848, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Tiantian & Haugen, Stein & Liu, Yiliu & Yang, Xue, 2023. "A value of prediction model to estimate optimal response time to threats for accident prevention," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Barr, John & Rabitz, Herschel, 2023. "Kernel-based global sensitivity analysis obtained from a single data set," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fissler, Tobias & Pesenti, Silvana M., 2023. "Sensitivity measures based on scoring functions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1408-1423.
    2. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    3. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    4. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    5. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    6. Haag, Fridolin & Chennu, Arjun, 2023. "Assessing whether decisions are more sensitive to preference or prediction uncertainty with a value of information approach," Omega, Elsevier, vol. 121(C).
    7. Zdeněk Kala, 2021. "New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability," Mathematics, MDPI, vol. 9(19), pages 1-20, September.
    8. Silvana M. Pesenti, 2021. "Reverse Sensitivity Analysis for Risk Modelling," Papers 2107.01065, arXiv.org, revised May 2022.
    9. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    10. Zhou, Changcong & Shi, Zhuangke & Kucherenko, Sergei & Zhao, Haodong, 2022. "A unified approach for global sensitivity analysis based on active subspace and Kriging," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    12. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    13. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    14. Shang, Yue & Nogal, Maria & Teixeira, Rui & Wolfert, A.R. (Rogier) M., 2024. "Extreme-oriented sensitivity analysis using sparse polynomial chaos expansion. Application to train–track–bridge systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2021. "Simultaneous estimation of complementary moment independent and reliability-oriented sensitivity measures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 721-737.
    17. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "A framework for global reliability sensitivity analysis in the presence of multi-uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    19. Zhu, Tiantian & Haugen, Stein & Liu, Yiliu & Yang, Xue, 2023. "A value of prediction model to estimate optimal response time to threats for accident prevention," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    20. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:221:y:2022:i:c:s0951832021006931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.