IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v10y1990i3p401-406.html
   My bibliography  Save this article

A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis

Author

Listed:
  • Ronald L. Iman
  • Stephen C. Hora

Abstract

The analysis of probabilistic fault trees often involves the investigation of events that contribute both to the frequency of the top event and to the uncertainty in this frequency. This paper provides a discussion of three measures of the contribution of an event to the total uncertainty in the top event. These measures are known as uncertainty importance measures. Two of these measures are new developments. Each of the measures is shown to have unique advantages and disadvantages. The three measures are based on, respectively, the expected reduction in the variance of the top‐event frequency should the uncertainty in an event be resolved, the same measure based on the log frequency, and a measure based on shifts in the quantiles of the distribution of top‐event frequency.

Suggested Citation

  • Ronald L. Iman & Stephen C. Hora, 1990. "A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis," Risk Analysis, John Wiley & Sons, vol. 10(3), pages 401-406, September.
  • Handle: RePEc:wly:riskan:v:10:y:1990:i:3:p:401-406
    DOI: 10.1111/j.1539-6924.1990.tb00523.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1990.tb00523.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1990.tb00523.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ronald L. Iman, 1987. "A Matrix‐Based Approach to Uncertainty and Sensitivity Analysis for Fault Trees," Risk Analysis, John Wiley & Sons, vol. 7(1), pages 21-33, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matieyendou Lamboni, 2023. "On Exact Distribution for Multivariate Weighted Distributions and Classification," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    2. Andrea Saltelli & Stefano Tarantola & Karen Chad, 1998. "Presenting Results from Model Based Studies to Decision‐Makers: Can Sensitivity Analysis Be a Defogging Agent?," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 799-803, December.
    3. Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
    4. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    5. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    6. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    7. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    8. Ronald L. Iman & Mark E. Johnson & Charles C. Watson, 2005. "Uncertainty Analysis for Computer Model Projections of Hurricane Losses," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1299-1312, October.
    9. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    10. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    11. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    12. Manel Baucells & Emanuele Borgonovo, 2013. "Invariant Probabilistic Sensitivity Analysis," Management Science, INFORMS, vol. 59(11), pages 2536-2549, November.
    13. Guijie Li & Zhenzhou Lu & Longfei Tian & Jia Xu, 2013. "The importance measure on the non-probabilistic reliability index of uncertain structures," Journal of Risk and Reliability, , vol. 227(6), pages 651-661, December.
    14. Taghizadeh, Elham & Venkatachalam, Saravanan & Chinnam, Ratna Babu, 2021. "Impact of deep-tier visibility on effective resilience assessment of supply networks," International Journal of Production Economics, Elsevier, vol. 241(C).
    15. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    16. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.
    17. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    18. Rabitti, Giovanni & Borgonovo, Emanuele, 2020. "Is mortality or interest rate the most important risk in annuity models? A comparison of sensitivity analysis methods," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 48-58.
    19. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Emanuele Borgonovo & William Castaings & Stefano Tarantola, 2011. "Moment Independent Importance Measures: New Results and Analytical Test Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 404-428, March.
    21. Wu, Zeping & Wang, Wenjie & Wang, Donghui & Zhao, Kun & Zhang, Weihua, 2019. "Global sensitivity analysis using orthogonal augmented radial basis function," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 291-302.
    22. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    23. Wenbin Ruan & Zhenzhou Lu & Pengfei Wei, 2013. "Estimation of conditional moment by moving least squares and its application for importance analysis," Journal of Risk and Reliability, , vol. 227(6), pages 641-650, December.
    24. Luyi Li & Zhenzhou Lu, 2016. "A new algorithm for importance analysis of the inputs with distribution parameter uncertainty," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3065-3077, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    2. Roger Flage & Terje Aven & Piero Baraldi & Enrico Zio, 2012. "An imprecision importance measure for uncertainty representations interpreted as lower and upper probabilities, with special emphasis on possibility theory," Journal of Risk and Reliability, , vol. 226(6), pages 656-665, December.
    3. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Moment‐Independent Sensitivity Analysis Using Copula," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 210-222, February.
    4. Ronald L. Iman & Mark E. Johnson & Charles C. Watson, 2005. "Uncertainty Analysis for Computer Model Projections of Hurricane Losses," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1299-1312, October.
    5. Timothy A. Wheeler & Kishore Gawande & Stephen Bespalko, 1997. "Development of Risk‐Based Ranking Measures of Effectiveness for the United States Coast Guard's Vessel Inspection Program," Risk Analysis, John Wiley & Sons, vol. 17(3), pages 333-340, June.
    6. Tong, Ming-Na & Zhao, Yan-Gang & Lu, Zhao-Hui, 2021. "Normal transformation for correlated random variables based on L-moments and its application in reliability engineering," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Uncertainty Importance Analysis Using Parametric Moment Ratio Functions," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 223-234, February.
    8. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    9. Guijie Li & Zhenzhou Lu & Longfei Tian & Jia Xu, 2013. "The importance measure on the non-probabilistic reliability index of uncertain structures," Journal of Risk and Reliability, , vol. 227(6), pages 651-661, December.
    10. Jon C. Helton, 1994. "Treatment of Uncertainty in Performance Assessments for Complex Systems," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 483-511, August.
    11. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    12. Ronald L. Iman & Jon C. Helton, 1988. "An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 71-90, March.
    13. Xin Xu & Zhenzhou Lu & Xiaopeng Luo, 2014. "A Stable Approach Based on Asymptotic Space Integration for Moment‐Independent Uncertainty Importance Measure," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 235-251, February.
    14. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2019. "A nonparametric importance sampling estimator for moment independent importance measures," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 3-16.
    15. Ronald L. Iman & Jon C. Helton, 1991. "The Repeatability of Uncertainty and Sensitivity Analyses for Complex Probabilistic Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 11(4), pages 591-606, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:10:y:1990:i:3:p:401-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.