IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v333y2024i2d10.1007_s10479-020-03842-y.html
   My bibliography  Save this article

Identifying Fintech risk through machine learning: analyzing the Q&A text of an online loan investment platform

Author

Listed:
  • Huosong Xia

    (Wuhan Textile University)

  • Jing Liu

    (Wuhan Textile University)

  • Zuopeng Justin Zhang

    (University of North Florida)

Abstract

Financial risks associated with Fintech have been increasing with its significant growth in recent years. Aiming at addressing the problem of identifying risks in online lending investment under a financial technology platform, we develop a Q&A text risk recognition model based on attention mechanism and Bi-directional Long Short-Term Memory. First, the Q&A pairing on the text data set is carried out, and the matching data set is selected for the next analysis. Secondly, the online loan investment platform is assessed by the named entity recognition of the question text. Finally, the risk level of the corresponding investment platform is evaluated based on the answer text. The experimental results show that the proposed model has achieved improved precision, recall, F1-score, and accuracy compared with other models. Our proposed model can be applied to identify the risks from the text posted on online loan investment platforms and can be used to guide investors’ investment and improve the management of financial technology platforms.

Suggested Citation

  • Huosong Xia & Jing Liu & Zuopeng Justin Zhang, 2024. "Identifying Fintech risk through machine learning: analyzing the Q&A text of an online loan investment platform," Annals of Operations Research, Springer, vol. 333(2), pages 579-599, February.
  • Handle: RePEc:spr:annopr:v:333:y:2024:i:2:d:10.1007_s10479-020-03842-y
    DOI: 10.1007/s10479-020-03842-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03842-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03842-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:333:y:2024:i:2:d:10.1007_s10479-020-03842-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.