IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/51434.html
   My bibliography  Save this paper

Model-based Purchase Predictions for Large Assortments

Author

Listed:
  • Jacobs, B.J.D.
  • Donkers, A.C.D.
  • Fok, D.

Abstract

Being able to accurately predict what a customer will purchase next is of paramount importance to successful online retailing. In practice, customer purchase history data is readily available to make such predictions, sometimes complemented with customer characteristics. Given the large assortments maintained by online retail- ers, scalability of the prediction method is just as important as its accuracy. We study two classes of models that use such data to predict what a customer will buy next: A novel approach that uses latent Dirichlet allocation (LDA), and mixtures of Dirichlet-Multinomials (MDM). A key benefit of a model-based approach is the potential to accommodate observed customer heterogeneity through the inclusion of predictor variables. We show that LDA can be extended in this direction while retaining its scalability. We apply the models to purchase data from an online re- tailer and contrast their predictive performance with that of a collaborative filter and a discrete choice model. Both LDA and MDM outperform the other meth- ods. Moreover, LDA attains performance similar to that of MDM while being far more scalable, rendering it a promising approach to purchase prediction in large assortments.

Suggested Citation

  • Jacobs, B.J.D. & Donkers, A.C.D. & Fok, D., 2016. "Model-based Purchase Predictions for Large Assortments," ERIM Report Series Research in Management ERS-2014-007-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:51434
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/51434/ERS-2014-007_3-MKT.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    2. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2014. "Examining the Impact of Ranking on Consumer Behavior and Search Engine Revenue," Management Science, INFORMS, vol. 60(7), pages 1632-1654, July.
    3. P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344, April.
    4. Xu, Yunjie (Calvin) & Kim, Hee-Woong, 2008. "Order Effect and Vendor Inspection in Online Comparison Shopping," Journal of Retailing, Elsevier, vol. 84(4), pages 477-486.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    6. Daniel McFadden, 1986. "The Choice Theory Approach to Market Research," Marketing Science, INFORMS, vol. 5(4), pages 275-297.
    7. Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
    8. Abel P. Jeuland & Frank M. Bass & Gordon P. Wright, 1980. "A Multibrand Stochastic Model Compounding Heterogeneous Erlang Timing and Multinomial Choice Processes," Operations Research, INFORMS, vol. 28(2), pages 255-277, April.
    9. Tuck Siong Chung & Roland T. Rust & Michel Wedel, 2009. "My Mobile Music: An Adaptive Personalization System for Digital Audio Players," Marketing Science, INFORMS, vol. 28(1), pages 52-68, 01-02.
    10. Elaine Zanutto & Eric Bradlow, 2006. "Data pruning in consumer choice models," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 267-287, September.
    11. Udo Wagner & Alfred Taudes, 1986. "A Multivariate Polya Model of Brand Choice and Purchase Incidence," Marketing Science, INFORMS, vol. 5(3), pages 219-244.
    12. Prasad Naik & Michel Wedel & Lynd Bacon & Anand Bodapati & Eric Bradlow & Wagner Kamakura & Jeffrey Kreulen & Peter Lenk & David Madigan & Alan Montgomery, 2008. "Challenges and opportunities in high-dimensional choice data analyses," Marketing Letters, Springer, vol. 19(3), pages 201-213, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehrenberg, Andrew S. C. & Uncles, Mark D. & Goodhardt, Gerald J., 2004. "Understanding brand performance measures: using Dirichlet benchmarks," Journal of Business Research, Elsevier, vol. 57(12), pages 1307-1325, December.
    2. Dannewald, Till & Kreis, Henning & Silberhorn, Nadja, 2007. "Das hybride Wahlmodell und seine Anwendung im Marketing," SFB 649 Discussion Papers 2007-062, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    4. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
    5. Hongmin Li & Scott Webster & Gwangjae Yu, 2020. "Product Design Under Multinomial Logit Choices: Optimization of Quality and Prices in an Evolving Product Line," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 1011-1025, September.
    6. Andrés Elberg & Pedro M. Gardete & Rosario Macera & Carlos Noton, 2019. "Dynamic effects of price promotions: field evidence, consumer search, and supply-side implications," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 1-58, March.
    7. Mohammed H. Alemu & Søren Bøye Olsen & Suzanne E. Vedel & John Kinyuru & Kennedy O. Pambo, 2016. "Integrating sensory evaluations in incentivized discrete choice experiments to assess consumer demand for cricket flour buns in Kenya," IFRO Working Paper 2016/02, University of Copenhagen, Department of Food and Resource Economics.
    8. Ting Li & Robert J. Kauffman & Eric van Heck & Peter Vervest & Benedict G. C. Dellaert, 2014. "Consumer Informedness and Firm Information Strategy," Information Systems Research, INFORMS, vol. 25(2), pages 345-363, June.
    9. Staudigel, Matthias & Oehlmann, Malte & Roosen, Jutta, 2024. "Demand effects of unilateral versus industry-wide sugar reduction scenarios," Food Policy, Elsevier, vol. 126(C).
    10. Honora Smith & Christine Currie & Pornpimol Chaiwuttisak & Andreas Kyprianou, 2018. "Patient choice modelling: how do patients choose their hospitals?," Health Care Management Science, Springer, vol. 21(2), pages 259-268, June.
    11. Makiko Nakano, 2019. "Evaluation of Corporate Social Responsibility by Consumers: Use of Organic Material and Long Working Hours of Employees," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    12. Park, Changwon & Senauer, Benjamin, 1996. "Estimation Of Household Brand-Size Choice Models For Spaghetti Products With Scanner Data," Working Papers 14336, University of Minnesota, The Food Industry Center.
    13. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2014. "The impact of the household decision environment on fuel choice behavior," Energy Economics, Elsevier, vol. 44(C), pages 236-247.
    14. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    15. Caputo, Vincenzina & Aprile, Maria Carmela & Nayga, Rodolfo M., Jr., 2011. "Consumers’ Valuation for European food quality labels: Importance of Label Information Provision," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114324, European Association of Agricultural Economists.
    16. John R. Howell & Sanghak Lee & Greg M. Allenby, 2016. "Price Promotions in Choice Models," Marketing Science, INFORMS, vol. 35(2), pages 319-334, March.
    17. Axel C. Mühlbacher & Anika Kaczynski & Peter Zweifel & F. Reed Johnson, 2016. "Experimental measurement of preferences in health and healthcare using best-worst scaling: an overview," Health Economics Review, Springer, vol. 6(1), pages 1-14, December.
    18. Olga Novikova & Dmitriy B. Potapov, 2015. "Empirical Analysis of Consumer Purchase Behavior: Interaction between State Dependence and Sensitivity to Marketing-Mix Variables," HSE Working papers WP BRP 48/MAN/2015, National Research University Higher School of Economics.
    19. Guyt, Jonne & Gijsbrechts, Els, 2018. "On consumer choice patterns and the net impact of feature promotions," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 490-508.
    20. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:51434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.