IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v285y2020i3p884-901.html
   My bibliography  Save this article

Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel

Author

Listed:
  • Qin, Tianbao
  • Du, Yuquan
  • Chen, Jiang Hang
  • Sha, Mei

Abstract

In the container terminals of seaports, the container handling system consists of a variety of container handling machines such as quay cranes, internal yard trucks, and yard cranes. This study applies a holistic approach to the integrated scheduling of these machines for the container handling operations of a single vessel. We formulate this special hybrid flow shop scheduling problem through both mixed integer programming (MIP) and constraint programming (CP) techniques. Then we develop an easily-implemented approach that combines the strengths of MIP and CP. First, the MIP model, which only considers quay crane scheduling, is solved by an MIP solver, and a quay crane allocation plan is retrieved from the MIP solution. Then, this quay crane allocation plan is fed to the CP model, warm-starting the branch-and-prune algorithm built in a CP optimizer. Our numerical experiments reveal that this hybrid MIP/CP approach can solve the large-sized instances with up to 1000 containers, 6 quay cranes, 36 yard trucks, and 15 yard cranes to optimality with a gap of less than 3.31%, within a solution time of 2 minutes. If we increase the solution time to 5 minutes, this hybrid approach solves larger instances with up to 1400 containers to optimality with a gap of less than 1.41%. The state-of-the-art dedicated algorithms reported in the literature (which address an easier version of the same problem by ignoring non-crossing constraints and safety margins between quay cranes) are only able to find solutions for real-life instances with up to 500 containers within the solution time of 2930 or 5221 seconds, leaving a 4% or an unknown optimality gap. Thus, this study improves the solution of this integrated scheduling problem in terms of the instance size, solution efficiency, and solution optimality.

Suggested Citation

  • Qin, Tianbao & Du, Yuquan & Chen, Jiang Hang & Sha, Mei, 2020. "Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel," European Journal of Operational Research, Elsevier, vol. 285(3), pages 884-901.
  • Handle: RePEc:eee:ejores:v:285:y:2020:i:3:p:884-901
    DOI: 10.1016/j.ejor.2020.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720301399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiyin Liu & Yat‐wah Wan & Lei Wang, 2006. "Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 60-74, February.
    2. Andrew Lim & Brian Rodrigues & Zhou Xu, 2007. "A m‐parallel crane scheduling problem with a non‐crossing constraint," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 115-127, March.
    3. Chen, Jiang Hang & Bierlaire, Michel, 2017. "The study of the unidirectional quay crane scheduling problem: complexity and risk-aversion," European Journal of Operational Research, Elsevier, vol. 260(2), pages 613-624.
    4. Unsal, Ozgur & Oguz, Ceyda, 2013. "Constraint programming approach to quay crane scheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 59(C), pages 108-122.
    5. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    6. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    7. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    8. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    9. Chen, Lu & Bostel, Nathalie & Dejax, Pierre & Cai, Jianguo & Xi, Lifeng, 2007. "A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal," European Journal of Operational Research, Elsevier, vol. 181(1), pages 40-58, August.
    10. Daganzo, Carlos F., 1989. "The crane scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 23(3), pages 159-175, June.
    11. Unsal, Ozgur & Oguz, Ceyda, 2019. "An exact algorithm for integrated planning of operations in dry bulk terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 103-121.
    12. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    13. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    14. Chen, Jiang Hang & Lee, Der-Horng & Goh, Mark, 2014. "An effective mathematical formulation for the unidirectional cluster-based quay crane scheduling problem," European Journal of Operational Research, Elsevier, vol. 232(1), pages 198-208.
    15. Frank Meisel, 2011. "The quay crane scheduling problem with time windows," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(7), pages 619-636, October.
    16. Luigi Moccia & Jean‐François Cordeau & Manlio Gaudioso & Gilbert Laporte, 2006. "A branch‐and‐cut algorithm for the quay crane scheduling problem in a container terminal," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 45-59, February.
    17. Dong Won Yi & Soung Hie Kim & Hyung Rim Choi & Nam-Kyu Park & Tae-Woo Lee, 2000. "Developing a conceptual model for sharing container terminal resources: a case study of the Gamman container terminal," Maritime Policy & Management, Taylor & Francis Journals, vol. 27(2), pages 155-167, April.
    18. Tang, Lixin & Zhao, Jiao & Liu, Jiyin, 2014. "Modeling and solution of the joint quay crane and truck scheduling problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 978-990.
    19. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    20. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    21. Y Zhu & A Lim, 2006. "Crane scheduling with non-crossing constraint," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(12), pages 1464-1471, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Jiahuan & Cui, Tianxiang & Bai, Ruibin & Qu, Rong, 2024. "Container port truck dispatching optimization using Real2Sim based deep reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(1), pages 161-175.
    2. Chen, Sumin & Zeng, Qingcheng & Li, Yantong, 2023. "Integrated operations planning in highly electrified container terminals considering time-of-use tariffs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    3. David Sacramento & Christine Solnon & David Pisinger, 2020. "Constraint Programming and Local Search Heuristic: a Matheuristic Approach for Routing and Scheduling Feeder Vessels in Multi-terminal Ports," SN Operations Research Forum, Springer, vol. 1(4), pages 1-33, December.
    4. Bahman Naderi & Rubén Ruiz & Vahid Roshanaei, 2023. "Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 817-843, July.
    5. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    6. Doaa Naeem & Amr Eltawil & Junichi Iijima & Mohamed Gheith, 2022. "Integrated Scheduling of Automated Yard Cranes and Automated Guided Vehicles with Limited Buffer Capacity of Dual-Trolley Quay Cranes in Automated Container Terminals," Logistics, MDPI, vol. 6(4), pages 1-17, December.
    7. Mei Li & Gai-Ge Wang & Helong Yu, 2021. "Sorting-Based Discrete Artificial Bee Colony Algorithm for Solving Fuzzy Hybrid Flow Shop Green Scheduling Problem," Mathematics, MDPI, vol. 9(18), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    2. Shoufeng Ma & Hongming Li & Ning Zhu & Chenyi Fu, 2021. "Stochastic programming approach for unidirectional quay crane scheduling problem with uncertainty," Journal of Scheduling, Springer, vol. 24(2), pages 137-174, April.
    3. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2022. "An exact algorithm for scheduling tandem quay crane operations in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    4. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    5. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    6. Sun, Defeng & Tang, Lixin & Baldacci, Roberto, 2019. "A Benders decomposition-based framework for solving quay crane scheduling problems," European Journal of Operational Research, Elsevier, vol. 273(2), pages 504-515.
    7. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    8. Defeng Sun & Lixin Tang & Roberto Baldacci & Zihan Chen, 2024. "A Decomposition Method for the Group-Based Quay Crane Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 543-570, March.
    9. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
    10. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    11. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    12. Hongming Li & Xintao Li, 2022. "A Branch-and-Bound Algorithm for the Bi-Objective Quay Crane Scheduling Problem Based on Efficiency and Energy," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
    13. Guvenc Dik & Erhan Kozan, 2017. "A flexible crane scheduling methodology for container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 64-96, March.
    14. Sun, Defeng & Tang, Lixin & Baldacci, Roberto & Lim, Andrew, 2021. "An exact algorithm for the unidirectional quay crane scheduling problem with vessel stability," European Journal of Operational Research, Elsevier, vol. 291(1), pages 271-283.
    15. Shucheng Yu & Shuaian Wang & Lu Zhen, 2017. "Quay crane scheduling problem with considering tidal impact and fuel consumption," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 345-368, December.
    16. Abdellah Salhi & Ghazwan Alsoufi & Xinan Yang, 2019. "An evolutionary approach to a combined mixed integer programming model of seaside operations as arise in container ports," Annals of Operations Research, Springer, vol. 272(1), pages 69-98, January.
    17. Lashkari, Shabnam & Wu, Yong & Petering, Matthew E.H., 2017. "Sequencing dual-spreader crane operations: Mathematical formulation and heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 262(2), pages 521-534.
    18. Dirk Briskorn & Florian Jaehn & Andreas Wiehl, 2019. "A generator for test instances of scheduling problems concerning cranes in transshipment terminals," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 45-69, March.
    19. Wu, Lingxiao & Ma, Weimin, 2017. "Quay crane scheduling with draft and trim constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 38-68.
    20. Frank Meisel & Christian Bierwirth, 2013. "A Framework for Integrated Berth Allocation and Crane Operations Planning in Seaport Container Terminals," Transportation Science, INFORMS, vol. 47(2), pages 131-147, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:285:y:2020:i:3:p:884-901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.