IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v282y2020i3p957-971.html
   My bibliography  Save this article

Adaptive consensus reaching process with hybrid strategies for large-scale group decision making

Author

Listed:
  • Tang, Ming
  • Liao, Huchang
  • Xu, Jiuping
  • Streimikiene, Dalia
  • Zheng, Xiaosong

Abstract

Large-scale group decision making, which involves dozens to hundreds of experts, is attracting increasing attention and has become an important topic in the field of decision making. Because of the clustering process, a large-scale group decision making problem can be divided into two levels: inter sub-group and intra sub-group. In existing consensus models under the large-scale group decision making environment, the degree of consensus within the intra sub-group is not truly taken into account. To deal with this issue, this work develops an adaptive consensus model for the sub-groups composed of hybrid strategies, with or without a feedback mechanism, according to the different levels of inter and intra degrees of consensus. These different levels of consensus are divided into four scenarios (high–high, high–low, low–high, low–low), and different feedback suggestions are generated corresponding to different cases. This hybrid mechanism can reduce the cost of supervision for the moderator. The fuzzy c-means clustering algorithm is used to classify experts. A weight-determining method combining the degree of cohesion and the size of a sub-group is introduced. Finally, an illustrative example is offered to verify the practicability of the proposed model. Some discussions and comparisons are provided to reveal the advantages and features of the proposed model.

Suggested Citation

  • Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
  • Handle: RePEc:eee:ejores:v:282:y:2020:i:3:p:957-971
    DOI: 10.1016/j.ejor.2019.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719308227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javier Palarea-Albaladejo & Josep Martín-Fernández & Jesús Soto, 2012. "Dealing with Distances and Transformations for Fuzzy C-Means Clustering of Compositional Data," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 144-169, July.
    2. Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
    3. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    4. Efremov, Roman & Insua, David Rios & Lotov, Alexander, 2009. "A framework for participatory decision support using Pareto frontier visualization, goal identification and arbitration," European Journal of Operational Research, Elsevier, vol. 199(2), pages 459-467, December.
    5. Cheng, Dong & Zhou, Zhili & Cheng, Faxin & Zhou, Yanfang & Xie, Yujing, 2018. "Modeling the minimum cost consensus problem in an asymmetric costs context," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1122-1137.
    6. Kacprzyk, Janusz & Fedrizzi, Mario, 1988. "A `soft' measure of consensus in the setting of partial (fuzzy) preferences," European Journal of Operational Research, Elsevier, vol. 34(3), pages 316-325, March.
    7. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    8. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    9. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    10. Kacprzyk, Janusz & Fedrizzi, Mario, 1989. "A `human-consistent' degree of consensus based on fuzzy login with linguistic quantifiers," Mathematical Social Sciences, Elsevier, vol. 18(3), pages 275-290, December.
    11. Xu, Zeshui & Da, Qingli, 2005. "A least deviation method to obtain a priority vector of a fuzzy preference relation," European Journal of Operational Research, Elsevier, vol. 164(1), pages 206-216, July.
    12. Liu, Fang & Zhang, Wei-Guo & Zhang, Li-Hua, 2014. "Consistency analysis of triangular fuzzy reciprocal preference relations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 718-726.
    13. Jinbaek Kim, 2008. "A model and case for supporting participatory public decision making in e-democracy," Group Decision and Negotiation, Springer, vol. 17(3), pages 179-193, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Fanyong & Tang, Jie & An, Qingxian, 2023. "Cooperative game based two-stage consensus adjustment mechanism for large-scale group decision making," Omega, Elsevier, vol. 117(C).
    2. Tang, Ming & Liao, Huchang & Mi, Xiaomei & Lev, Benjamin & Pedrycz, Witold, 2021. "A hierarchical consensus reaching process for group decision making with noncooperative behaviors," European Journal of Operational Research, Elsevier, vol. 293(2), pages 632-642.
    3. Tang, Ming & Liao, Huchang, 2024. "Group efficiency and individual fairness tradeoff in making wise decisions," Omega, Elsevier, vol. 124(C).
    4. Chen, Xiaohong & Yang, Shuhan & Hu, Dongbin & Li, Xihua, 2024. "Sustainable mining method selection by a multi-stakeholder collaborative multi-attribute group decision-making method," Resources Policy, Elsevier, vol. 92(C).
    5. Tong, Huagang & Zhu, Jianjun, 2023. "A parallel approach with the strategy-proof mechanism for large-scale group decision making: An application in industrial internet," European Journal of Operational Research, Elsevier, vol. 311(1), pages 173-195.
    6. Tang, Ming & Liao, Huchang, 2021. "Multi-attribute large-scale group decision making with data mining and subgroup leaders: An application to the development of the circular economy," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    7. Ming Tang & Huchang Liao, 2023. "Group Structure and Information Distribution on the Emergence of Collective Intelligence," Decision Analysis, INFORMS, vol. 20(2), pages 133-150, June.
    8. Mingwei Wang & Decui Liang & Zeshui Xu & Wen Cao, 2022. "Consensus reaching with the externality effect of social network for three-way group decisions," Annals of Operations Research, Springer, vol. 315(2), pages 707-745, August.
    9. Choi, Tsan-Ming & Chen, Yue, 2021. "Circular supply chain management with large scale group decision making in the big data era: The macro-micro model," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    10. Manouchehrabadi, Behrang & Letizia, Paolo & Hendrikse, George, 2022. "Democratic versus elite governance for project selection decisions in executive committees," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1126-1138.
    11. Yuan-Wei Du & Yu-Kun Shan, 2021. "A Dynamic Intelligent Recommendation Method Based on the Analytical ER Rule for Evaluating Product Ideas in Large-Scale Group Decision-Making," Group Decision and Negotiation, Springer, vol. 30(6), pages 1373-1393, December.
    12. Bismark Appiah Addae & Weiming Wang & Haiyan Xu & Mohammad Reza Feylizadeh, 2021. "Sustainable Evaluation of Factors Affecting Energy-Resource Conflict in the Western Region of Ghana Using Large Group-DEMATEL," Group Decision and Negotiation, Springer, vol. 30(4), pages 847-877, August.
    13. Guo, Weiwei & Gong, Zaiwu & Zhang, Wei-Guo & Xu, Yanxin, 2023. "Minimum cost consensus modeling under dynamic feedback regulation mechanism considering consensus principle and tolerance level," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1279-1295.
    14. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    15. Feifei Jin & Jinpei Liu & Ligang Zhou & Luis Martínez, 2021. "Consensus-Based Linguistic Distribution Large-Scale Group Decision Making Using Statistical Inference and Regret Theory," Group Decision and Negotiation, Springer, vol. 30(4), pages 813-845, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    2. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    3. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    4. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    5. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    6. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    7. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    8. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    9. Wang, Ying-Ming & Parkan, Celik, 2008. "Optimal aggregation of fuzzy preference relations with an application to broadband internet service selection," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1476-1486, June.
    10. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    11. Chao, Xiangrui & Kou, Gang & Peng, Yi & Viedma, Enrique Herrera, 2021. "Large-scale group decision-making with non-cooperative behaviors and heterogeneous preferences: An application in financial inclusion," European Journal of Operational Research, Elsevier, vol. 288(1), pages 271-293.
    12. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    13. Eduardo Fernández & Claudia Gómez-Santillán & Nelson Rangel-Valdez & Laura Cruz-Reyes, 2022. "Group Multi-Objective Optimization Under Imprecision and Uncertainty Using a Novel Interval Outranking Approach," Group Decision and Negotiation, Springer, vol. 31(5), pages 945-994, October.
    14. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    15. Sumin Yu & Zhijiao Du & Xuanhua Xu, 2021. "Hierarchical Punishment-Driven Consensus Model for Probabilistic Linguistic Large-Group Decision Making with Application to Global Supplier Selection," Group Decision and Negotiation, Springer, vol. 30(6), pages 1343-1372, December.
    16. Sha Fan & Hengjie Zhang & Huali Tang, 2019. "A Linguistic Hierarchy Model with Self-Confidence Preference Relations and Its Application in Co-Regulation of Food Safety in China," IJERPH, MDPI, vol. 16(16), pages 1-21, August.
    17. Liu, Bingsheng & Zhou, Qi & Ding, Ru-Xi & Palomares, Iván & Herrera, Francisco, 2019. "Large-scale group decision making model based on social network analysis: Trust relationship-based conflict detection and elimination," European Journal of Operational Research, Elsevier, vol. 275(2), pages 737-754.
    18. Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
    19. Hengjie Zhang & Fang Wang & Huali Tang & Yucheng Dong, 2019. "An Optimization-Based Approach to Social Network Group Decision Making with an Application to Earthquake Shelter-Site Selection," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
    20. Yazidi, Anis & Ivanovska, Magdalena & Zennaro, Fabio M. & Lind, Pedro G. & Viedma, Enrique Herrera, 2022. "A new decision making model based on Rank Centrality for GDM with fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1030-1041.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:282:y:2020:i:3:p:957-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.