IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v272y2019i3p1017-1027.html
   My bibliography  Save this article

A consensus-based probabilistic linguistic gained and lost dominance score method

Author

Listed:
  • Wu, Xingli
  • Liao, Huchang

Abstract

This paper proposes a comprehensive Multiple Criteria Group Decision Making (MCGDM) method with probabilistic linguistic information based on a new consensus measure and a novel outranking method, Gained and Lost Dominance Score (GLDS). Firstly, new operations of the probabilistic linguistic term sets are introduced based on the adjusted rules of probabilistic linguistic term sets and the linguistic scale functions for semantics of linguistic terms. After defining a new consensus measure based on the correlation degree between probabilistic linguistic term sets, we develop a consensus reaching method to improve the consensus degree of a group. To rank alternatives reasonably, we further propose the GLDS method which considers both the “group utility” and the “individual regret” values. The core of the GLDS is to calculate the gained and lost dominance scores that the optimal solution dominates all other alternatives in terms of the net gained dominance flow and the net lost dominance flow. Then, we integrate the GLDS ranking method with the consensus reaching process and develop a consensus-based PL-GLDS method to solve the MCGDM problems with probabilistic linguistic information. Finally, the proposed method is validated by a case study of selecting optimal green enterprises. Some comparative analyses are given to show the efficiency of the proposed method.

Suggested Citation

  • Wu, Xingli & Liao, Huchang, 2019. "A consensus-based probabilistic linguistic gained and lost dominance score method," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1017-1027.
  • Handle: RePEc:eee:ejores:v:272:y:2019:i:3:p:1017-1027
    DOI: 10.1016/j.ejor.2018.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718306660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Yucheng & Hong, Wei-Chiang & Xu, Yinfeng & Yu, Shui, 2013. "Numerical scales generated individually for analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 229(3), pages 654-662.
    2. Gong, Zaiwu & Zhang, Huanhuan & Forrest, Jeffrey & Li, Lianshui & Xu, Xiaoxia, 2015. "Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual," European Journal of Operational Research, Elsevier, vol. 240(1), pages 183-192.
    3. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    4. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    5. Xu, Zeshui, 2005. "Deviation measures of linguistic preference relations in group decision making," Omega, Elsevier, vol. 33(3), pages 249-254, June.
    6. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    7. Ma, Li-Ching, 2016. "A new group ranking approach for ordinal preferences based on group maximum consensus sequences," European Journal of Operational Research, Elsevier, vol. 251(1), pages 171-181.
    8. Qin, Jindong & Liu, Xinwang & Pedrycz, Witold, 2017. "An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment," European Journal of Operational Research, Elsevier, vol. 258(2), pages 626-638.
    9. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    10. Zhou, Wei & Xu, Zeshui, 2016. "Generalized asymmetric linguistic term set and its application to qualitative decision making involving risk appetites," European Journal of Operational Research, Elsevier, vol. 254(2), pages 610-621.
    11. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    2. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    3. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    4. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    5. Yan, Hong-Bin & Ma, Tieju & Huynh, Van-Nam, 2017. "On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective," Omega, Elsevier, vol. 70(C), pages 94-117.
    6. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    7. Li, Huanhuan & Ji, Ying & Ding, Jieyu & Qu, Shaojian & Zhang, Huijie & Li, Yuanming & Liu, Yubing, 2024. "Robust two-stage optimization consensus models with uncertain costs," European Journal of Operational Research, Elsevier, vol. 317(3), pages 977-1002.
    8. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    9. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    10. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    11. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    12. Ishizaka, Alessio & Nemery, Philippe & Lidouh, Karim, 2013. "Location selection for the construction of a casino in the Greater London region: A triple multi-criteria approach," Tourism Management, Elsevier, vol. 34(C), pages 211-220.
    13. Sumin Yu & Zhijiao Du & Xuanhua Xu, 2021. "Hierarchical Punishment-Driven Consensus Model for Probabilistic Linguistic Large-Group Decision Making with Application to Global Supplier Selection," Group Decision and Negotiation, Springer, vol. 30(6), pages 1343-1372, December.
    14. Min Xue & Chao Fu & Shan-Lin Yang, 2021. "Dynamic Expert Reliability Based Feedback Mechanism in Consensus Reaching Process with Distributed Preference Relations," Group Decision and Negotiation, Springer, vol. 30(2), pages 341-375, April.
    15. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    16. Yandong He & Xu Wang & Yun Lin & Fuli Zhou, 2016. "Optimal Partner Combination for Joint Distribution Alliance using Integrated Fuzzy EW-AHP and TOPSIS for Online Shopping," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    17. Xuyuan Zhang & Hailin Liang & Shaojian Qu, 2024. "Robust Consensus Modeling: Concerning Consensus Fairness and Efficiency with Uncertain Costs," Mathematics, MDPI, vol. 12(8), pages 1-31, April.
    18. József Dombi & Tamás Jónás, 2024. "Learning the weights using attribute order information for multi-criteria decision making tasks," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 2379-2409, December.
    19. Hui Lin & Zhou-Jing Wang, 2017. "Linguistic Multi-Attribute Group Decision Making with Risk Preferences and Its Use in Low-Carbon Tourism Destination Selection," IJERPH, MDPI, vol. 14(9), pages 1-14, September.
    20. Sun, Bingzhen & Ma, Weimin, 2015. "An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application," Omega, Elsevier, vol. 51(C), pages 83-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:272:y:2019:i:3:p:1017-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.