IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v235y2014i3p718-726.html
   My bibliography  Save this article

Consistency analysis of triangular fuzzy reciprocal preference relations

Author

Listed:
  • Liu, Fang
  • Zhang, Wei-Guo
  • Zhang, Li-Hua

Abstract

In order to simulate the uncertainty associated with impression or vagueness, a decision maker may give her/his judgments by means of triangular fuzzy reciprocal preference relations in the process of decision making. The study of their consistency becomes a very important aspect to avoid a misleading solution. Based on the reciprocity property, this paper proposes a new definition of consistent triangular fuzzy reciprocal preference relations. The new definition is different from that reduced by consistent fuzzy reciprocal preference relations proposed by Buckley (1985). The properties of consistent triangular fuzzy reciprocal preference relations in the light of the new definition are studied in detail. In addition, the shortcomings of the proof procedure of the proposition given by Wang and Chen (2008) are pointed out. And the proposition is reproved by using the new definition of consistent triangular fuzzy reciprocal preference relations. Finally, using the (n−1) restricted comparison ratios, a method for obtaining consistent triangular fuzzy reciprocal preference relations is proposed, and an algorithm is shown to make a consistent decision ranking. Numerical results are further calculated to illustrate the new definition and the obtained algorithm.

Suggested Citation

  • Liu, Fang & Zhang, Wei-Guo & Zhang, Li-Hua, 2014. "Consistency analysis of triangular fuzzy reciprocal preference relations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 718-726.
  • Handle: RePEc:eee:ejores:v:235:y:2014:i:3:p:718-726
    DOI: 10.1016/j.ejor.2013.10.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171300862X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.10.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Wei-Guo & Zhang, Xi-Li & Xu, Wei-Jun, 2010. "A risk tolerance model for portfolio adjusting problem with transaction costs based on possibilistic moments," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 493-499, June.
    2. Entani, Tomoe & Sugihara, Kazutomi, 2012. "Uncertainty index based interval assignment by Interval AHP," European Journal of Operational Research, Elsevier, vol. 219(2), pages 379-385.
    3. Leung, L. C. & Cao, D., 2000. "On consistency and ranking of alternatives in fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 124(1), pages 102-113, July.
    4. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    5. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    6. Siraj, Sajid & Mikhailov, Ludmil & Keane, John, 2012. "A heuristic method to rectify intransitive judgments in pairwise comparison matrices," European Journal of Operational Research, Elsevier, vol. 216(2), pages 420-428.
    7. Bana e Costa, Carlos A. & Vansnick, Jean-Claude, 2008. "A critical analysis of the eigenvalue method used to derive priorities in AHP," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1422-1428, June.
    8. Rezaei, Jafar & Ortt, Roland, 2013. "Multi-criteria supplier segmentation using a fuzzy preference relations based AHP," European Journal of Operational Research, Elsevier, vol. 225(1), pages 75-84.
    9. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    10. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    11. Arbel, Ami, 1989. "Approximate articulation of preference and priority derivation," European Journal of Operational Research, Elsevier, vol. 43(3), pages 317-326, December.
    12. Saaty, Thomas L. & Shang, Jennifer S., 2011. "An innovative orders-of-magnitude approach to AHP-based mutli-criteria decision making: Prioritizing divergent intangible humane acts," European Journal of Operational Research, Elsevier, vol. 214(3), pages 703-715, November.
    13. Saaty, Thomas L. & Vargas, Luis G., 1987. "Uncertainty and rank order in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 32(1), pages 107-117, October.
    14. Liu, Fang & Zhang, Wei-Guo & Wang, Zhong-Xing, 2012. "A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making," European Journal of Operational Research, Elsevier, vol. 218(3), pages 747-754.
    15. Wang, Tien-Chin & Chen, Yueh-Hsiang, 2007. "Applying consistent fuzzy preference relations to partnership selection," Omega, Elsevier, vol. 35(4), pages 384-388, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atiq-ur Rehman & Mustanser Hussain & Adeel Farooq & Muhammad Akram, 2019. "Consensus-Based Multi-Person Decision Making with Incomplete Fuzzy Preference Relations Using Product Transitivity," Mathematics, MDPI, vol. 7(2), pages 1-13, February.
    2. Xiao Tan & Zaiwu Gong & Minji Huang & Zhou-Jing Wang, 2017. "Selecting Cooking Methods to Decrease Persistent Organic Pollutant Concentrations in Food of Animal Origin Using a Consensus Decision-Making Model," IJERPH, MDPI, vol. 14(2), pages 1-18, February.
    3. Kou, Gang & Ergu, Daji & Shang, Jennifer, 2014. "Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction," European Journal of Operational Research, Elsevier, vol. 236(1), pages 261-271.
    4. Fanyong Meng & Qingxian An & Xiaohong Chen, 2016. "A consistency and consensus-based method to group decision making with interval linguistic preference relations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1419-1437, November.
    5. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    6. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    7. Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
    8. Xia, Meimei & Chen, Jian, 2015. "Multi-criteria group decision making based on bilateral agreements," European Journal of Operational Research, Elsevier, vol. 240(3), pages 756-764.
    9. Fanyong Meng & Xiaohong Chen, 2018. "A robust additive consistency-based method for decision making with triangular fuzzy reciprocal preference relations," Fuzzy Optimization and Decision Making, Springer, vol. 17(1), pages 49-73, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    2. Wang, Zhou-Jing & Li, Kevin W., 2015. "A multi-step goal programming approach for group decision making with incomplete interval additive reciprocal comparison matrices," European Journal of Operational Research, Elsevier, vol. 242(3), pages 890-900.
    3. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    4. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    5. Liu, Fang & Zhang, Wei-Guo & Wang, Zhong-Xing, 2012. "A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making," European Journal of Operational Research, Elsevier, vol. 218(3), pages 747-754.
    6. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    7. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    8. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    9. Wu-E Yang & Chao-Qun Ma & Zhi-Qiu Han & Wen-Jun Chen, 2016. "Checking and adjusting order-consistency of linguistic pairwise comparison matrices for getting transitive preference relations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 769-787, July.
    10. Jana Krejčí & Alessio Ishizaka, 2018. "FAHPSort: A Fuzzy Extension of the AHPSort Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1119-1145, July.
    11. Zeshui Xu & Xiaoqiang Cai, 2014. "Deriving Weights from Interval Multiplicative Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 23(4), pages 695-713, July.
    12. Zhen Zhang & Chonghui Guo, 2017. "Deriving priority weights from intuitionistic multiplicative preference relations under group decision-making settings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1582-1599, December.
    13. Meimei Xia & Jian Chen, 2015. "Studies on Interval Multiplicative Preference Relations and Their Application to Group Decision Making," Group Decision and Negotiation, Springer, vol. 24(1), pages 115-144, January.
    14. Ho, William & Ma, Xin, 2018. "The state-of-the-art integrations and applications of the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 267(2), pages 399-414.
    15. Meng, Fanyong & Tan, Chunqiao & Chen, Xiaohong, 2017. "Multiplicative consistency analysis for interval fuzzy preference relations: A comparative study," Omega, Elsevier, vol. 68(C), pages 17-38.
    16. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    17. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    18. József Temesi, 2019. "An interactive approach to determine the elements of a pairwise comparison matrix," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 533-549, June.
    19. Lucas, Rochelle Irene & Promentilla, Michael Angelo & Ubando, Aristotle & Tan, Raymond Girard & Aviso, Kathleen & Yu, Krista Danielle, 2017. "An AHP-based evaluation method for teacher training workshop on information and communication technology," Evaluation and Program Planning, Elsevier, vol. 63(C), pages 93-100.
    20. Yulan Wang & Huayou Chen & Ligang Zhou, 2013. "Logarithm Compatibility of Interval Multiplicative Preference Relations with an Application to Determining the Optimal Weights of Experts in the Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(4), pages 759-772, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:235:y:2014:i:3:p:718-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.