IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v306y2023i3p1279-1295.html
   My bibliography  Save this article

Minimum cost consensus modeling under dynamic feedback regulation mechanism considering consensus principle and tolerance level

Author

Listed:
  • Guo, Weiwei
  • Gong, Zaiwu
  • Zhang, Wei-Guo
  • Xu, Yanxin

Abstract

Since the hard consensus is difficult and costly to achieve in group decision making (GDM), it is reasonable and necessary for decision makers (DMs) to reach a soft consensus within a certain level of tolerance and consensus. To achieve this purpose, the concepts and definitions of consensus principle, tolerance level and consensus level are proposed in this paper. The consensus principle keeps the consensus reaching process (CRP) always moving in a better direction, and the tolerance level characterizes the individual’s psychological receptivity, while the consensus level guarantees the quality of consensus results, then the minimum cost consensus models (MCCMs) based on these three points are proposed. Thereafter, we add a feedback regulation mechanism based on tolerance threshold rewards to the proposed MCCMs, the mechanism connects individual weight with tolerance threshold, avoiding the subjective disadvantage caused by the two values need to be given in advance. Meanwhile, the framework and specific algorithm of CRP under the tolerance threshold reward feedback regulation mechanism are given, providing a precise method for solving the realistic consensus problems. Finally, the consensus reaching case of the carbon emission benchmark shows the reasonable effectiveness of the two different models proposed in this paper, and the comparative analysis shows the differences and applicability of the two models.

Suggested Citation

  • Guo, Weiwei & Gong, Zaiwu & Zhang, Wei-Guo & Xu, Yanxin, 2023. "Minimum cost consensus modeling under dynamic feedback regulation mechanism considering consensus principle and tolerance level," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1279-1295.
  • Handle: RePEc:eee:ejores:v:306:y:2023:i:3:p:1279-1295
    DOI: 10.1016/j.ejor.2022.08.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722006750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.08.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    2. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    3. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    4. Cheng, Dong & Zhou, Zhili & Cheng, Faxin & Zhou, Yanfang & Xie, Yujing, 2018. "Modeling the minimum cost consensus problem in an asymmetric costs context," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1122-1137.
    5. Tang, Ming & Liao, Huchang & Mi, Xiaomei & Lev, Benjamin & Pedrycz, Witold, 2021. "A hierarchical consensus reaching process for group decision making with noncooperative behaviors," European Journal of Operational Research, Elsevier, vol. 293(2), pages 632-642.
    6. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
    7. Zaiwu Gong & Chao Xu & Francisco Chiclana & Xiaoxia Xu, 2017. "Consensus Measure with Multi-stage Fluctuation Utility Based on China’s Urban Demolition Negotiation," Group Decision and Negotiation, Springer, vol. 26(2), pages 379-407, March.
    8. Gong, Zaiwu & Xu, Xiaoxia & Zhang, Huanhuan & Aytun Ozturk, U. & Herrera-Viedma, Enrique & Xu, Chao, 2015. "The consensus models with interval preference opinions and their economic interpretation," Omega, Elsevier, vol. 55(C), pages 81-90.
    9. Gong, Zaiwu & Zhang, Huanhuan & Forrest, Jeffrey & Li, Lianshui & Xu, Xiaoxia, 2015. "Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual," European Journal of Operational Research, Elsevier, vol. 240(1), pages 183-192.
    10. Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
    11. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    12. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    13. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    14. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dombi, József & Jónás, Tamás, 2024. "Consensus measures based on a fuzzy concept," European Journal of Operational Research, Elsevier, vol. 315(2), pages 642-653.
    2. József Dombi & Jenő Fáró & Tamás Jónás, 2023. "A Fuzzy Entropy-Based Group Consensus Measure for Financial Investments," Mathematics, MDPI, vol. 12(1), pages 1-18, December.
    3. Li, Huanhuan & Ji, Ying & Ding, Jieyu & Qu, Shaojian & Zhang, Huijie & Li, Yuanming & Liu, Yubing, 2024. "Robust two-stage optimization consensus models with uncertain costs," European Journal of Operational Research, Elsevier, vol. 317(3), pages 977-1002.
    4. Meng, Fan-Yong & Zhao, Deng-Yu & Gong, Zai-Wu & Chu, Jun-Fei & Pedrycz, Witold & Yuan, Zhe, 2024. "Consensus adjustment for multi-attribute group decision making based on cross-allocation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 200-216.
    5. Jana Goers & Graham Horton, 2024. "On the Combinatorial Acceptability Entropy Consensus Metric for Multi-Criteria Group Decisions," Group Decision and Negotiation, Springer, vol. 33(5), pages 1247-1268, October.
    6. Wang, Peng & Liu, Peide & Li, Yueyuan & Teng, Fei & Pedrycz, Witold, 2024. "Trust exploration- and leadership incubation- based opinion dynamics model for social network group decision-making: A quantum theory perspective," European Journal of Operational Research, Elsevier, vol. 317(1), pages 156-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    2. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    3. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    4. Meng, Fan-Yong & Zhao, Deng-Yu & Gong, Zai-Wu & Chu, Jun-Fei & Pedrycz, Witold & Yuan, Zhe, 2024. "Consensus adjustment for multi-attribute group decision making based on cross-allocation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 200-216.
    5. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    6. Dong Cheng & Yong Wu & Yuxiang Yuan & Faxin Cheng & Dianwei Chen, 2024. "Modeling the Maximum Perceived Utility Consensus Based on Prospect Theory," Group Decision and Negotiation, Springer, vol. 33(5), pages 951-975, October.
    7. Du, Junliang & Liu, Sifeng & Liu, Yong, 2022. "A limited cost consensus approach with fairness concern and its application," European Journal of Operational Research, Elsevier, vol. 298(1), pages 261-275.
    8. Tang, Ming & Liao, Huchang, 2024. "Group efficiency and individual fairness tradeoff in making wise decisions," Omega, Elsevier, vol. 124(C).
    9. Li, Huanhuan & Ji, Ying & Ding, Jieyu & Qu, Shaojian & Zhang, Huijie & Li, Yuanming & Liu, Yubing, 2024. "Robust two-stage optimization consensus models with uncertain costs," European Journal of Operational Research, Elsevier, vol. 317(3), pages 977-1002.
    10. Ying Ji & Huanhuan Li & Huijie Zhang, 2022. "Risk-Averse Two-Stage Stochastic Minimum Cost Consensus Models with Asymmetric Adjustment Cost," Group Decision and Negotiation, Springer, vol. 31(2), pages 261-291, April.
    11. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    12. Dombi, József & Jónás, Tamás, 2024. "Consensus measures based on a fuzzy concept," European Journal of Operational Research, Elsevier, vol. 315(2), pages 642-653.
    13. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    14. Xiangrui Chao & Yucheng Dong & Gang Kou & Yi Peng, 2022. "How to determine the consensus threshold in group decision making: a method based on efficiency benchmark using benefit and cost insight," Annals of Operations Research, Springer, vol. 316(1), pages 143-177, September.
    15. Xuyuan Zhang & Hailin Liang & Shaojian Qu, 2024. "Robust Consensus Modeling: Concerning Consensus Fairness and Efficiency with Uncertain Costs," Mathematics, MDPI, vol. 12(8), pages 1-31, April.
    16. Mingwei Wang & Decui Liang & Zeshui Xu & Wen Cao, 2022. "Consensus reaching with the externality effect of social network for three-way group decisions," Annals of Operations Research, Springer, vol. 315(2), pages 707-745, August.
    17. Yuanming Li & Ying Ji & Shaojian Qu, 2022. "Consensus Building for Uncertain Large-Scale Group Decision-Making Based on the Clustering Algorithm and Robust Discrete Optimization," Group Decision and Negotiation, Springer, vol. 31(2), pages 453-489, April.
    18. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    19. Rodríguez, Rosa M. & Labella, Álvaro & Nuñez-Cacho, Pedro & Molina-Moreno, Valentin & Martínez, Luis, 2022. "A comprehensive minimum cost consensus model for large scale group decision making for circular economy measurement," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    20. Jie Tang & Fanyong Meng, 2024. "An Adaptive Core-Nash Bargaining Game Consensus Mechanism for Group Decision Making," Group Decision and Negotiation, Springer, vol. 33(4), pages 805-837, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:306:y:2023:i:3:p:1279-1295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.