IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i15p2740-d253578.html
   My bibliography  Save this article

An Optimization-Based Approach to Social Network Group Decision Making with an Application to Earthquake Shelter-Site Selection

Author

Listed:
  • Hengjie Zhang

    (Business School, Hohai University, Nanjing 211100, China)

  • Fang Wang

    (Business School, Hohai University, Nanjing 211100, China)

  • Huali Tang

    (Business School, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China)

  • Yucheng Dong

    (Business School, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China)

Abstract

The social network has emerged as an essential component in group decision making (GDM) problems. Thus, this paper investigates the social network GDM (SNGDM) problem and assumes that decision makers offer their preferences utilizing additive preference relations (also called fuzzy preference relations). An optimization-based approach is devised to generate the weights of decision makers by combining two reliable resources: in-degree centrality indexes and consistency indexes. Based on the obtained weights of decision makers, the individual additive preference relations are aggregated into a collective additive preference relation. Further, the alternatives are ranked from best to worst according to the obtained collective additive preference relation. Moreover, earthquakes have occurred frequently around the world in recent years, causing great loss of life and property. Earthquake shelters offer safety, security, climate protection, and resistance to disease and ill health and are thus vital for disaster-affected people. Selection of a suitable site for locating shelters from potential alternatives is of critical importance, which can be seen as a GDM problem. When selecting a suitable earthquake shelter-site, the social trust relationships among disaster management experts should not be ignored. To this end, the proposed SNGDM model is applied to evaluate and select earthquake shelter-sites to show its effectiveness. In summary, this paper constructs a novel GDM framework by taking the social trust relationship into account, which can provide a scientific basis for public emergency management in the major disasters field.

Suggested Citation

  • Hengjie Zhang & Fang Wang & Huali Tang & Yucheng Dong, 2019. "An Optimization-Based Approach to Social Network Group Decision Making with an Application to Earthquake Shelter-Site Selection," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:15:p:2740-:d:253578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/15/2740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/15/2740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jian Zhao & Fan Ding & Zhe Wang & Jinghuan Ren & Jing Zhao & Yeping Wang & Xuefeng Tang & Yong Wang & Jianyi Yao & Qun Li, 2018. "A Rapid Public Health Needs Assessment Framework for after Major Earthquakes Using High-Resolution Satellite Imagery," IJERPH, MDPI, vol. 15(6), pages 1-18, May.
    2. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    3. Alfredo Altuzarra & José María Moreno-Jiménez & Manuel Salvador, 2010. "Consensus Building in AHP-Group Decision Making: A Bayesian Approach," Operations Research, INFORMS, vol. 58(6), pages 1755-1773, December.
    4. Xia Liu & Yejun Xu & Yao Ge & Weike Zhang & Francisco Herrera, 2019. "A Group Decision Making Approach Considering Self-Confidence Behaviors and Its Application in Environmental Pollution Emergency Management," IJERPH, MDPI, vol. 16(3), pages 1-15, January.
    5. Dorit S. Hochbaum & Asaf Levin, 2006. "Methodologies and Algorithms for Group-Rankings Decision," Management Science, INFORMS, vol. 52(9), pages 1394-1408, September.
    6. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    7. Dong, Yucheng & Liu, Yating & Liang, Haiming & Chiclana, Francisco & Herrera-Viedma, Enrique, 2018. "Strategic weight manipulation in multiple attribute decision making," Omega, Elsevier, vol. 75(C), pages 154-164.
    8. Bowen Zhang & Yucheng Dong & Enrique Herrera-Viedma, 2019. "Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching," Group Decision and Negotiation, Springer, vol. 28(3), pages 585-617, June.
    9. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bian Liang & Dapeng Yang & Xinghong Qin & Teresa Tinta, 2019. "A Risk-Averse Shelter Location and Evacuation Routing Assignment Problem in an Uncertain Environment," IJERPH, MDPI, vol. 16(20), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Siqi & Wu, Meng & Dong, Yucheng & Liang, Haiming & Zhao, Sihai, 2020. "The 2-rank additive model with axiomatic design in multiple attribute decision making," European Journal of Operational Research, Elsevier, vol. 287(2), pages 536-545.
    2. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    3. Hengjie Zhang & Wenfeng Zhu & Xin Chen & Yuzhu Wu & Haiming Liang & Cong-Cong Li & Yucheng Dong, 2024. "Managing flexible linguistic expression and ordinal classification-based consensus in large-scale multi-attribute group decision making," Annals of Operations Research, Springer, vol. 341(1), pages 95-148, October.
    4. Sha Fan & Hengjie Zhang & Huali Tang, 2019. "A Linguistic Hierarchy Model with Self-Confidence Preference Relations and Its Application in Co-Regulation of Food Safety in China," IJERPH, MDPI, vol. 16(16), pages 1-21, August.
    5. Xia Liu & Yejun Xu & Yao Ge & Weike Zhang & Francisco Herrera, 2019. "A Group Decision Making Approach Considering Self-Confidence Behaviors and Its Application in Environmental Pollution Emergency Management," IJERPH, MDPI, vol. 16(3), pages 1-15, January.
    6. Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
    7. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    8. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    9. Zhibin Wu & Jie Xiao & Ivan Palomares, 2019. "Direct Iterative Procedures for Consensus Building with Additive Preference Relations Based on the Discrete Assessment Scale," Group Decision and Negotiation, Springer, vol. 28(6), pages 1167-1191, December.
    10. Xiangrui Chao & Yucheng Dong & Gang Kou & Yi Peng, 2022. "How to determine the consensus threshold in group decision making: a method based on efficiency benchmark using benefit and cost insight," Annals of Operations Research, Springer, vol. 316(1), pages 143-177, September.
    11. Bowen Zhang & Yucheng Dong & Enrique Herrera-Viedma, 2019. "Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching," Group Decision and Negotiation, Springer, vol. 28(3), pages 585-617, June.
    12. Zhang, Hengjie & Dong, Yucheng & Xiao, Jing & Chiclana, Francisco & Herrera-Viedma, Enrique, 2021. "Consensus and opinion evolution-based failure mode and effect analysis approach for reliability management in social network and uncertainty contexts," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    13. Jing Xiao & Xiuli Wang & Hengjie Zhang, 2022. "Exploring the Ordinal Classifications of Failure Modes in the Reliability Management: An Optimization-Based Consensus Model with Bounded Confidences," Group Decision and Negotiation, Springer, vol. 31(1), pages 49-80, February.
    14. Khalid, Asma & Beg, Ismat, 2018. "Influence model of evasive decision makers," MPRA Paper 95493, University Library of Munich, Germany, revised 15 Jun 2019.
    15. Tong, Huagang & Zhu, Jianjun, 2023. "A parallel approach with the strategy-proof mechanism for large-scale group decision making: An application in industrial internet," European Journal of Operational Research, Elsevier, vol. 311(1), pages 173-195.
    16. Tang, Ming & Liao, Huchang & Xu, Jiuping & Streimikiene, Dalia & Zheng, Xiaosong, 2020. "Adaptive consensus reaching process with hybrid strategies for large-scale group decision making," European Journal of Operational Research, Elsevier, vol. 282(3), pages 957-971.
    17. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    18. Yang, Yun & Ma, Changxi & Ling, Gang, 2022. "Pre-location for temporary distribution station of urban emergency materials considering priority under COVID-19: A case study of Wuhan City, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    19. Paul Tae-Woo Lee & Cheng-Wei Lin & Yi-Shih Chung, 2014. "Comparison analysis for subjective and objective weights of financial positions of container shipping companies," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(3), pages 241-250, May.
    20. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:15:p:2740-:d:253578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.