IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v267y2018i3p1003-1013.html
   My bibliography  Save this article

Expected shortfall: Heuristics and certificates

Author

Listed:
  • Ramponi, Federico Alessandro
  • Campi, Marco C.

Abstract

We consider the expected shortfall, a coherent risk measure that is gaining popularity outside mathematical finance and that is being applied to an increasing number of optimization problems due to its versatility and pleasant properties. A commonly used heuristic to optimize the expected shortfall consists in replacing the unknown distribution of the loss function with its empirical discrete counterpart constructed from observations. The boundary of the empirical shortfall tail is called the shortfall threshold, and, in this paper, we study the probability of incurring losses larger than the shortfall threshold. In a stationary set-up, we show that under mild conditions a striking universal result holds which says that the probability of losses exceeding the shortfall threshold is a random variable whose distribution is independent of the distribution of the loss function. This result complements previous findings on the expected shortfall and bears important practical consequences on the applications of this risk measure to stochastic optimization. The theory this result rests on is fully developed in this paper and its use is illustrated by examples.

Suggested Citation

  • Ramponi, Federico Alessandro & Campi, Marco C., 2018. "Expected shortfall: Heuristics and certificates," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1003-1013.
  • Handle: RePEc:eee:ejores:v:267:y:2018:i:3:p:1003-1013
    DOI: 10.1016/j.ejor.2017.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717310330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zymler, Steve & Rustem, Berç & Kuhn, Daniel, 2011. "Robust portfolio optimization with derivative insurance guarantees," European Journal of Operational Research, Elsevier, vol. 210(2), pages 410-424, April.
    2. Takafumi Kanamori & Akiko Takeda, 2012. "Worst-Case Violation of Sampled Convex Programs for Optimization with Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 152(1), pages 171-197, January.
    3. Chan, Timothy C.Y. & Mahmoudzadeh, Houra & Purdie, Thomas G., 2014. "A robust-CVaR optimization approach with application to breast cancer therapy," European Journal of Operational Research, Elsevier, vol. 238(3), pages 876-885.
    4. Bertsimas, Dimitris & Lauprete, Geoffrey J. & Samarov, Alexander, 2004. "Shortfall as a risk measure: properties, optimization and applications," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1353-1381, April.
    5. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2008. "Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization," Management Science, INFORMS, vol. 54(3), pages 573-585, March.
    6. Mafusalov, Alexander & Uryasev, Stan, 2016. "CVaR (superquantile) norm: Stochastic case," European Journal of Operational Research, Elsevier, vol. 249(1), pages 200-208.
    7. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    8. Ponomareva, K. & Roman, D. & Date, P., 2015. "An algorithm for moment-matching scenario generation with application to financial portfolio optimisation," European Journal of Operational Research, Elsevier, vol. 240(3), pages 678-687.
    9. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    10. B. K. Pagnoncelli & D. Reich & M. C. Campi, 2012. "Risk-Return Trade-off with the Scenario Approach in Practice: A Case Study in Portfolio Selection," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 707-722, November.
    11. Takeda, Akiko & Kanamori, Takafumi, 2009. "A robust approach based on conditional value-at-risk measure to statistical learning problems," European Journal of Operational Research, Elsevier, vol. 198(1), pages 287-296, October.
    12. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2009. "Constructing Risk Measures from Uncertainty Sets," Operations Research, INFORMS, vol. 57(5), pages 1129-1141, October.
    13. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    15. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    16. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    17. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    18. M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.
    19. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    2. Yang, Bill Huajian & Yang, Jenny & Yang, Haoji, 2020. "Modeling Portfolio Loss by Interval Distributions," MPRA Paper 102219, University Library of Munich, Germany.
    3. Dinh, Dung V. & Powell, Robert J. & Vo, Duc H., 2021. "Forecasting corporate financial distress in the Southeast Asian countries: A market-based approach," Journal of Asian Economics, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    2. Ling, Aifan & Sun, Jie & Wang, Meihua, 2020. "Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set," European Journal of Operational Research, Elsevier, vol. 285(1), pages 81-95.
    3. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    4. Zhu, Shushang & Fan, Minjie & Li, Duan, 2014. "Portfolio management with robustness in both prediction and decision: A mixture model based learning approach," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 1-25.
    5. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    6. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    7. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    8. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    9. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    10. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    11. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    12. Amir Ahmadi-Javid & Malihe Fallah-Tafti, 2017. "Portfolio Optimization with Entropic Value-at-Risk," Papers 1708.05713, arXiv.org.
    13. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    14. Lotfi, Somayyeh & Zenios, Stavros A., 2018. "Robust VaR and CVaR optimization under joint ambiguity in distributions, means, and covariances," European Journal of Operational Research, Elsevier, vol. 269(2), pages 556-576.
    15. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    16. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    17. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    18. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    19. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    20. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:267:y:2018:i:3:p:1003-1013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.