IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v198y2009i1p287-296.html
   My bibliography  Save this article

A robust approach based on conditional value-at-risk measure to statistical learning problems

Author

Listed:
  • Takeda, Akiko
  • Kanamori, Takafumi

Abstract

In statistical learning problems, measurement errors in the observed data degrade the reliability of estimation. There exist several approaches to handle those uncertainties in observations. In this paper, we propose to use the conditional value-at-risk (CVaR) measure in order to depress influence of measurement errors, and investigate the relation between the resulting CVaR minimization problems and some existing approaches in the same framework. For the CVaR minimization problems which include the computation of integration, we apply Monte Carlo sampling method and obtain their approximate solutions. The approximation error bound and convergence property of the solution are proved by Vapnik and Chervonenkis theory. Numerical experiments show that the CVaR minimization problem can achieve fairly good estimation results, compared with several support vector machines, in the presence of measurement errors.

Suggested Citation

  • Takeda, Akiko & Kanamori, Takafumi, 2009. "A robust approach based on conditional value-at-risk measure to statistical learning problems," European Journal of Operational Research, Elsevier, vol. 198(1), pages 287-296, October.
  • Handle: RePEc:eee:ejores:v:198:y:2009:i:1:p:287-296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00561-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trafalis, Theodore B. & Gilbert, Robin C., 2006. "Robust classification and regression using support vector machines," European Journal of Operational Research, Elsevier, vol. 173(3), pages 893-909, September.
    2. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    3. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mert Gürbüzbalaban & Andrzej Ruszczyński & Landi Zhu, 2022. "A Stochastic Subgradient Method for Distributionally Robust Non-convex and Non-smooth Learning," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1014-1041, September.
    2. Shivam Gupta & Sachin Modgil & Samadrita Bhattacharyya & Indranil Bose, 2022. "Artificial intelligence for decision support systems in the field of operations research: review and future scope of research," Annals of Operations Research, Springer, vol. 308(1), pages 215-274, January.
    3. Jun-Ya Gotoh & Keita Shinozaki & Akiko Takeda, 2013. "Robust portfolio techniques for mitigating the fragility of CVaR minimization and generalization to coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 13(10), pages 1621-1635, October.
    4. Gao, Fuqing & Wang, Shaochen, 2011. "Asymptotic behavior of the empirical conditional value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 345-352.
    5. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    6. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Xu Leiyan & Zhiqing Meng, 2019. "Multi-Loss WCVaR Risk Decision Optimization Based On Weight for Centralized Supply Problem of Direct Chain Enterprises," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-16, April.
    8. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    9. Ramponi, Federico Alessandro & Campi, Marco C., 2018. "Expected shortfall: Heuristics and certificates," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1003-1013.
    10. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Hsin, Yi-Ting & Sheu, Her-Jiun, 2022. "Omega portfolio models with floating return threshold," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 743-758.
    11. Zhongde Luo, 2020. "Nonparametric kernel estimation of CVaR under $$\alpha $$α-mixing sequences," Statistical Papers, Springer, vol. 61(2), pages 615-643, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    2. Petros Xanthopoulos & Mario Guarracino & Panos Pardalos, 2014. "Robust generalized eigenvalue classifier with ellipsoidal uncertainty," Annals of Operations Research, Springer, vol. 216(1), pages 327-342, May.
    3. A. Paç & Mustafa Pınar, 2014. "Robust portfolio choice with CVaR and VaR under distribution and mean return ambiguity," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 875-891, October.
    4. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    5. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2008. "Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization," Management Science, INFORMS, vol. 54(3), pages 573-585, March.
    6. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    7. Durand-Lasserve, Olivier & Pierru, Axel, 2021. "Modeling world oil market questions: An economic perspective," Energy Policy, Elsevier, vol. 159(C).
    8. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    9. V. Guigues & C. Sagastizábal & J. P. Zubelli, 2014. "Robust Management and Pricing of Liquefied Natural Gas Contracts with Cancelation Options," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 179-198, April.
    10. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    11. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    12. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
    13. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Hsin, Yi-Ting & Sheu, Her-Jiun, 2022. "Omega portfolio models with floating return threshold," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 743-758.
    14. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.
    15. Xue Deng & Ying Liang, 2023. "Robust Portfolio Optimization Based on Semi-Parametric ARMA-TGARCH-EVT Model with Mixed Copula Using WCVaR," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 267-294, January.
    16. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    17. Goh, Joel Weiqiang & Lim, Kian Guan & Sim, Melvyn & Zhang, Weina, 2012. "Portfolio value-at-risk optimization for asymmetrically distributed asset returns," European Journal of Operational Research, Elsevier, vol. 221(2), pages 397-406.
    18. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    19. Lukáš Adam & Martin Branda & Holger Heitsch & René Henrion, 2020. "Solving joint chance constrained problems using regularization and Benders’ decomposition," Annals of Operations Research, Springer, vol. 292(2), pages 683-709, September.
    20. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:198:y:2009:i:1:p:287-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.