IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/102219.html
   My bibliography  Save this paper

Modeling Portfolio Loss by Interval Distributions

Author

Listed:
  • Yang, Bill Huajian
  • Yang, Jenny
  • Yang, Haoji

Abstract

Models for a continuous risk outcome has a wide application in portfolio risk management and capital allocation. We introduce a family of interval distributions based on variable transformations. Densities for these distributions are provided. Models with a random effect, targeting a continuous risk outcome, can then be fitted by maximum likelihood approaches assuming an interval distribution. Given fixed effects, regression function can be estimated and derived accordingly when required. This provides an alternative regression tool to the fraction response model and Beta regression model.

Suggested Citation

  • Yang, Bill Huajian & Yang, Jenny & Yang, Haoji, 2020. "Modeling Portfolio Loss by Interval Distributions," MPRA Paper 102219, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:102219
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/102219/1/MPRA_paper_102219.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    2. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    3. Ramponi, Federico Alessandro & Campi, Marco C., 2018. "Expected shortfall: Heuristics and certificates," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1003-1013.
    4. Yang, Bill Huajian, 2013. "Estimating Long-Run PD, Asset Correlation, and Portfolio Level PD by Vasicek Models," MPRA Paper 57244, University Library of Munich, Germany.
    5. Rosen, Dan & Saunders, David, 2009. "Analytical methods for hedging systematic credit risk with linear factor portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 37-52, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuliani, Elisa & Martinelli, Arianna & Rabellotti, Roberta, 2016. "Is Co-Invention Expediting Technological Catch Up? A Study of Collaboration between Emerging Country Firms and EU Inventors," World Development, Elsevier, vol. 77(C), pages 192-205.
    2. Jianhong Mu & Bruce McCarl & Anne Wein, 2013. "Adaptation to climate change: changes in farmland use and stocking rate in the U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 713-730, August.
    3. Vânia G. Silva & Esmeralda A. Ramalho & Carlos R. Vieira, 2017. "The Use of Cheques in the European Union: A Cross-Country Analysis," Open Economies Review, Springer, vol. 28(3), pages 581-602, July.
    4. Paulo Bastos & Manuel Cabral, 2007. "The Dynamics of International Trade Patterns," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 143(3), pages 391-415, October.
    5. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    6. Reboul, E. & Guérin, I. & Nordman, C.J., 2021. "The gender of debt and credit: Insights from rural Tamil Nadu," World Development, Elsevier, vol. 142(C).
    7. Christelis, Dimitris & Georgarakos, Dimitris & Jappelli, Tullio, 2015. "Wealth shocks, unemployment shocks and consumption in the wake of the Great Recession," Journal of Monetary Economics, Elsevier, vol. 72(C), pages 21-41.
    8. Schwiebert, Jörg & Wagner, Joachim, 2015. "A Generalized Two-Part Model for Fractional Response Variables with Excess Zeros," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113059, Verein für Socialpolitik / German Economic Association.
    9. Bluhm R & Crombrugghe D.P.I. de & Szirmai A., 2013. "The pace of poverty reduction - A fractional response approach," MERIT Working Papers 2013-051, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    10. Santos Silva, J.M.C. & Tenreyro, Silvana & Wei, Kehai, 2014. "Estimating the extensive margin of trade," Journal of International Economics, Elsevier, vol. 93(1), pages 67-75.
    11. José M. R. Murteira & Joaquim J. S. Ramalho, 2016. "Regression Analysis of Multivariate Fractional Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 515-552, April.
    12. Barbosa, Natália & Faria, Ana Paula, 2011. "Innovation across Europe: How important are institutional differences?," Research Policy, Elsevier, vol. 40(9), pages 1157-1169.
    13. Morton, Rebecca B. & Muller, Daniel & Page, Lionel & Torgler, Benno, 2015. "Exit polls, turnout, and bandwagon voting: Evidence from a natural experiment," European Economic Review, Elsevier, vol. 77(C), pages 65-81.
    14. Richard Kneller & Mauro Pisu & Zhihong Yu, 2008. "Overseas business costs and firm export performance," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(2), pages 639-669, May.
    15. repec:ags:ijag24:346830 is not listed on IDEAS
    16. Bluhm, Richard & de Crombrugghe, Denis & Szirmai, Adam, 2018. "Poverty accounting," European Economic Review, Elsevier, vol. 104(C), pages 237-255.
    17. Andries, Petra & Hünermund, Paul, 2014. "Staging innovation projects: (when) does it pay off?," ZEW Discussion Papers 14-091, ZEW - Leibniz Centre for European Economic Research.
    18. Dermine, J. & Neto de Carvalho, C., 2008. "Bank loan-loss provisioning, central bank rules vs. estimation: The case of Portugal," Journal of Financial Stability, Elsevier, vol. 4(1), pages 1-22, April.
    19. Song, Jingyu & Delgado, Michael & Preckel, Paul, 2017. "Aggregated Fractional Regression Estimation: Some Monte Carlo Evidence," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258209, Agricultural and Applied Economics Association.
    20. Montoya-Blandón, Santiago & Jacho-Chávez, David T., 2020. "Semiparametric quasi maximum likelihood estimation of the fractional response model," Economics Letters, Elsevier, vol. 186(C).
    21. Bastos, João A., 2010. "Forecasting bank loans loss-given-default," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2510-2517, October.

    More about this item

    Keywords

    Interval distribution; model with a random effect; tailed index; expected shortfall; heteroscedasticity; Beta regression model; fraction response model; maximum likelihood.;
    All these keywords.

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:102219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.