IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v250y2016i2p566-578.html
   My bibliography  Save this article

The use of a GERT based method to model concurrent product development processes

Author

Listed:
  • Nelson, Richard Graham
  • Azaron, Amir
  • Aref, Samin

Abstract

This paper proposes a time-computing model using the Graphical Evaluation and Review Technique (GERT) to analyse concurrent New Product Development (NPD) processes. The research presented here differs from previous work carried out on concurrent engineering. First, we conceptualise a concurrent NPD process using the GERT scheduling technique and derive a method of modelling the information and communication complexities within the process. Second, we extend previous research carried out on concurrent engineering and incorporate it within our model. Finally, we present an alternative method of analysing concurrent NPD process for both researchers and project managers alike. The GERT model developed in this paper was successfully employed at two NPD firms located in Ireland and Iran.

Suggested Citation

  • Nelson, Richard Graham & Azaron, Amir & Aref, Samin, 2016. "The use of a GERT based method to model concurrent product development processes," European Journal of Operational Research, Elsevier, vol. 250(2), pages 566-578.
  • Handle: RePEc:eee:ejores:v:250:y:2016:i:2:p:566-578
    DOI: 10.1016/j.ejor.2015.09.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715008826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.09.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas A. Roemer & Reza Ahmadi & Robert H. Wang, 2000. "Time-Cost Trade-Offs in Overlapped Product Development," Operations Research, INFORMS, vol. 48(6), pages 858-865, December.
    2. Robert P. Smith & Steven D. Eppinger, 1997. "Identifying Controlling Features of Engineering Design Iteration," Management Science, INFORMS, vol. 43(3), pages 276-293, March.
    3. Viswanathan Krishnan & Steven D. Eppinger & Daniel E. Whitney, 1997. "A Model-Based Framework to Overlap Product Development Activities," Management Science, INFORMS, vol. 43(4), pages 437-451, April.
    4. Amir Azaron & Hideki Katagiri & Masatoshi Sakawa, 2007. "Time-cost trade-off via optimal control theory in Markov PERT networks," Annals of Operations Research, Springer, vol. 150(1), pages 47-64, March.
    5. Christian Terwiesch & Christoph H. Loch, 1999. "Measuring the Effectiveness of Overlapping Development Activities," Management Science, INFORMS, vol. 45(4), pages 455-465, April.
    6. Dragut, A.B. & Bertrand, J.W.M., 2008. "A representation model for the solving-time distribution of a set of design tasks in new product development (NPD)," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1217-1233, September.
    7. Aaron J. Shenhar, 2001. "One Size Does Not Fit All Projects: Exploring Classical Contingency Domains," Management Science, INFORMS, vol. 47(3), pages 394-414, March.
    8. Thomas A. Roemer & Reza Ahmadi, 2004. "Concurrent Crashing and Overlapping in Product Development," Operations Research, INFORMS, vol. 52(4), pages 606-622, August.
    9. Azaron, Amir & Katagiri, Hideki & Sakawa, Masatoshi & Kato, Kosuke & Memariani, Azizollah, 2006. "A multi-objective resource allocation problem in PERT networks," European Journal of Operational Research, Elsevier, vol. 172(3), pages 838-854, August.
    10. Bernard W. Taylor, III & Laurence J. Moore, 1980. "R&D Project Planning with Q-GERT Network Modeling and Simulation," Management Science, INFORMS, vol. 26(1), pages 44-59, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jingkui & Liu, Xiaona & Lu, Yuze & Wang, Hanzheng, 2024. "Reliability analysis on energy storage system combining GO-FLOW methodology with GERT network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Geng, Sunyue & Yang, Ming & Mitici, Mihaela & Liu, Sifeng, 2023. "A resilience assessment framework for complex engineered systems using graphical evaluation and review technique (GERT)," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Shadi Sadri & S. M. T. Fatemi Ghomi & Amin Dehghanian, 2024. "Analysis of a time–cost trade-off in a resource-constrained GERT project scheduling problem using the Markov decision process," Annals of Operations Research, Springer, vol. 338(1), pages 535-568, July.
    4. Pensri, Jaroenwanit & Supot Deboonmee & Uraiporn Kattiyapornpong, 2017. "The Development of Innovative Product Concept: A Case of Organic Rice in Thailand," Journal of Emerging Trends in Marketing and Management, The Bucharest University of Economic Studies, vol. 1(1), pages 171-180, October.
    5. Andrey Privalov & Igor Kotenko & Igor Saenko & Natalya Evglevskaya & Daniil Titov, 2021. "Evaluating the Functioning Quality of Data Transmission Networks in the Context of Cyberattacks," Energies, MDPI, vol. 14(16), pages 1-19, August.
    6. Wang, Haiyan & Zhan, Sha-lei & Ng, Chi To & Cheng, T.C.E., 2020. "Coordinating quality, time, and carbon emissions in perishable food production: A new technology integrating GERT and the Bayesian approach," International Journal of Production Economics, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Jun & Chai, Kah Hin & Wong, Yoke San & Brombacher, Aarnout C., 2008. "A dynamic model for managing overlapped iterative product development," European Journal of Operational Research, Elsevier, vol. 185(1), pages 378-392, February.
    2. Annika Lorenz & Michael Raven & Knut Blind, 2019. "The role of standardization at the interface of product and process development in biotechnology," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1097-1133, August.
    3. Gülru F. Özkan-Seely & Cheryl Gaimon & Stylianos Kavadias, 2015. "Dynamic Knowledge Transfer and Knowledge Development for Product and Process Design Teams," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 177-190, May.
    4. Nitindra R. Joglekar & Ali A. Yassine & Steven D. Eppinger & Daniel E. Whitney, 2001. "Performance of Coupled Product Development Activities with a Deadline," Management Science, INFORMS, vol. 47(12), pages 1605-1620, December.
    5. Indranil R. Bardhan & Vish V. Krishnan & Shu Lin, 2007. "Project Performance and the Enabling Role of Information Technology: An Exploratory Study on the Role of Alignment," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 579-595, May.
    6. Thomas A. Roemer & Reza Ahmadi, 2004. "Concurrent Crashing and Overlapping in Product Development," Operations Research, INFORMS, vol. 52(4), pages 606-622, August.
    7. Qian, Yanjun & Xie, Min & Goh, Thong Ngee & Lin, Jun, 2010. "Optimal testing strategies in overlapped design process," European Journal of Operational Research, Elsevier, vol. 206(1), pages 131-143, October.
    8. Victoria L. Mitchell & Barrie R. Nault, 2007. "Cooperative Planning, Uncertainty, and Managerial Control in Concurrent Design," Management Science, INFORMS, vol. 53(3), pages 375-389, March.
    9. V. Krishnan & Karl T. Ulrich, 2001. "Product Development Decisions: A Review of the Literature," Management Science, INFORMS, vol. 47(1), pages 1-21, January.
    10. Paulo J. Gomes & Nitin R. Joglekar, 2008. "Linking modularity with problem solving and coordination efforts," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 29(5), pages 443-457.
    11. Foad Iravani & Sriram Dasu & Reza Ahmadi, 2012. "A Hierarchical Framework for Organizing a Software Development Process," Operations Research, INFORMS, vol. 60(6), pages 1310-1322, December.
    12. Lin, Jun & Chai, Kah Hin & Brombacher, Aarnout C. & Wong, Yoke San, 2009. "Optimal overlapping and functional interaction in product development," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1158-1169, August.
    13. Morvarid Rahmani & Guillaume Roels & Uday S. Karmarkar, 2017. "Collaborative Work Dynamics in Projects with Co‐Production," Production and Operations Management, Production and Operations Management Society, vol. 26(4), pages 686-703, April.
    14. Bernardo A. Huberman & Dennis M. Wilkinson, 2010. "Fluctuating Efforts and Interdependencies in Collaborative Work," Group Decision and Negotiation, Springer, vol. 19(2), pages 169-191, March.
    15. Cheryl Gaimon & Manpreet Hora & Karthik Ramachandran, 2017. "Towards Building Multidisciplinary Knowledge on Management of Technology: An Introduction to the Special Issue," Production and Operations Management, Production and Operations Management Society, vol. 26(4), pages 567-578, April.
    16. Christian Terwiesch & Christoph H. Loch & Arnoud De Meyer, 2002. "Exchanging Preliminary Information in Concurrent Engineering: Alternative Coordination Strategies," Organization Science, INFORMS, vol. 13(4), pages 402-419, August.
    17. Yaghoubi, Saeed & Noori, Siamak & Azaron, Amir & Fynes, Brian, 2015. "Resource allocation in multi-class dynamic PERT networks with finite capacity," European Journal of Operational Research, Elsevier, vol. 247(3), pages 879-894.
    18. Joglekar, Nitindra R., 2003. "Performance of coupled product development activities with a deadline," Working papers WP 4122-00., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    19. Sosa, Manuel E., 2003. "Factors that influence technical communication in distributed product development : an empirical study in the telecommunications industry," Working papers WP 4123-00., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    20. Pankaj Setia & Balaji Rajagopalan & Vallabh Sambamurthy & Roger Calantone, 2012. "How Peripheral Developers Contribute to Open-Source Software Development," Information Systems Research, INFORMS, vol. 23(1), pages 144-163, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:250:y:2016:i:2:p:566-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.