IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v218y2012i1p202-210.html
   My bibliography  Save this article

Mining axiomatic fuzzy set association rules for classification problems

Author

Listed:
  • Wang, Xin
  • Liu, Xiaodong
  • Pedrycz, Witold
  • Zhu, Xiaolei
  • Hu, Guangfei

Abstract

In this paper, we propose a novel method to mine association rules for classification problems namely AFSRC (AFS association rules for classification) realized in the framework of the axiomatic fuzzy set (AFS) theory. This model provides a simple and efficient rule generation mechanism. It can also retain meaningful rules for imbalanced classes by fuzzifying the concept of the class support of a rule. In addition, AFSRC can handle different data types occurring simultaneously. Furthermore, the new model can produce membership functions automatically by processing available data. An extensive suite of experiments are reported which offer a comprehensive comparison of the performance of the method with the performance of some other methods available in the literature. The experimental result shows that AFSRC outperforms most of other methods when being quantified in terms of accuracy and interpretability. AFSRC forms a classifier with high accuracy and more interpretable rule base of smaller size while retaining a sound balance between these two characteristics.

Suggested Citation

  • Wang, Xin & Liu, Xiaodong & Pedrycz, Witold & Zhu, Xiaolei & Hu, Guangfei, 2012. "Mining axiomatic fuzzy set association rules for classification problems," European Journal of Operational Research, Elsevier, vol. 218(1), pages 202-210.
  • Handle: RePEc:eee:ejores:v:218:y:2012:i:1:p:202-210
    DOI: 10.1016/j.ejor.2011.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711003663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unler, Alper & Murat, Alper, 2010. "A discrete particle swarm optimization method for feature selection in binary classification problems," European Journal of Operational Research, Elsevier, vol. 206(3), pages 528-539, November.
    2. Dunbar, Michelle & Murray, John M. & Cysique, Lucette A. & Brew, Bruce J. & Jeyakumar, Vaithilingam, 2010. "Simultaneous classification and feature selection via convex quadratic programming with application to HIV-associated neurocognitive disorder assessment," European Journal of Operational Research, Elsevier, vol. 206(2), pages 470-478, October.
    3. Lenca, Philippe & Meyer, Patrick & Vaillant, Benoit & Lallich, Stephane, 2008. "On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid," European Journal of Operational Research, Elsevier, vol. 184(2), pages 610-626, January.
    4. Ravi, V. & Zimmermann, H. -J., 2000. "Fuzzy rule based classification with FeatureSelector and modified threshold accepting," European Journal of Operational Research, Elsevier, vol. 123(1), pages 16-28, May.
    5. Ravi, V. & Reddy, P. J. & Zimmermann, H. -J., 2000. "Pattern classification with principal component analysis and fuzzy rule bases," European Journal of Operational Research, Elsevier, vol. 126(3), pages 526-533, November.
    6. Amo, A. & Montero, J. & Biging, G. & Cutello, V., 2004. "Fuzzy classification systems," European Journal of Operational Research, Elsevier, vol. 156(2), pages 495-507, July.
    7. Meiri, Ronen & Zahavi, Jacob, 2006. "Using simulated annealing to optimize the feature selection problem in marketing applications," European Journal of Operational Research, Elsevier, vol. 171(3), pages 842-858, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derhami, Shahab & Smith, Alice E., 2017. "An integer programming approach for fuzzy rule-based classification systems," European Journal of Operational Research, Elsevier, vol. 256(3), pages 924-934.
    2. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derhami, Shahab & Smith, Alice E., 2017. "An integer programming approach for fuzzy rule-based classification systems," European Journal of Operational Research, Elsevier, vol. 256(3), pages 924-934.
    2. Fouskakis, D., 2012. "Bayesian variable selection in generalized linear models using a combination of stochastic optimization methods," European Journal of Operational Research, Elsevier, vol. 220(2), pages 414-422.
    3. Wang, Haifeng & Zheng, Bichen & Yoon, Sang Won & Ko, Hoo Sang, 2018. "A support vector machine-based ensemble algorithm for breast cancer diagnosis," European Journal of Operational Research, Elsevier, vol. 267(2), pages 687-699.
    4. Hu, Yi-Chung, 2006. "A knowledge acquisition method for determining utilities of linguistic values for product factors," European Journal of Operational Research, Elsevier, vol. 174(2), pages 945-958, October.
    5. Bertolazzi, P. & Felici, G. & Festa, P. & Fiscon, G. & Weitschek, E., 2016. "Integer programming models for feature selection: New extensions and a randomized solution algorithm," European Journal of Operational Research, Elsevier, vol. 250(2), pages 389-399.
    6. Aytug, Haldun, 2015. "Feature selection for support vector machines using Generalized Benders Decomposition," European Journal of Operational Research, Elsevier, vol. 244(1), pages 210-218.
    7. Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012. "Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization," Applied Energy, Elsevier, vol. 92(C), pages 552-562.
    8. Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
    9. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    10. Moraes, Marcelo Botelho da Costa & Nagano, Marcelo Seido, 2014. "Evolutionary models in cash management policies with multiple assets," Economic Modelling, Elsevier, vol. 39(C), pages 1-7.
    11. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    12. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    13. Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
    14. Ravi, V. & Reddy, P. J. & Zimmermann, H. -J., 2000. "Pattern classification with principal component analysis and fuzzy rule bases," European Journal of Operational Research, Elsevier, vol. 126(3), pages 526-533, November.
    15. A. Pérez-Alonso & I. J. Blanco & J. M. Serrano & L. M. González-González, 2021. "Incremental maintenance of discovered fuzzy association rules," Fuzzy Optimization and Decision Making, Springer, vol. 20(4), pages 429-449, December.
    16. Anzanello, Michel J. & Albin, Susan L. & Chaovalitwongse, Wanpracha A., 2012. "Multicriteria variable selection for classification of production batches," European Journal of Operational Research, Elsevier, vol. 218(1), pages 97-105.
    17. Bin, Wei & Qinke, Peng & Jing, Zhao & Xiao, Chen, 2012. "A binary particle swarm optimization algorithm inspired by multi-level organizational learning behavior," European Journal of Operational Research, Elsevier, vol. 219(2), pages 224-233.
    18. Huaijun Wang & Ruomeng Ke & Junhuai Li & Yang An & Kan Wang & Lei Yu, 2018. "A correlation-based binary particle swarm optimization method for feature selection in human activity recognition," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    19. Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
    20. Toshiki Sato & Yuichi Takano & Ryuhei Miyashiro & Akiko Yoshise, 2016. "Feature subset selection for logistic regression via mixed integer optimization," Computational Optimization and Applications, Springer, vol. 64(3), pages 865-880, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:218:y:2012:i:1:p:202-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.