IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v239y2014i2p437-448.html
   My bibliography  Save this article

Applying oracles of on-demand accuracy in two-stage stochastic programming – A computational study

Author

Listed:
  • Wolf, Christian
  • Fábián, Csaba I.
  • Koberstein, Achim
  • Suhl, Leena

Abstract

Traditionally, two variants of the L-shaped method based on Benders’ decomposition principle are used to solve two-stage stochastic programming problems: the aggregate and the disaggregate version. In this study we report our experiments with a special convex programming method applied to the aggregate master problem. The convex programming method is of the type that uses an oracle with on-demand accuracy. We use a special form which, when applied to two-stage stochastic programming problems, is shown to integrate the advantages of the traditional variants while avoiding their disadvantages. On a set of 105 test problems, we compare and analyze parallel implementations of regularized and unregularized versions of the algorithms. The results indicate that solution times are significantly shortened by applying the concept of on-demand accuracy.

Suggested Citation

  • Wolf, Christian & Fábián, Csaba I. & Koberstein, Achim & Suhl, Leena, 2014. "Applying oracles of on-demand accuracy in two-stage stochastic programming – A computational study," European Journal of Operational Research, Elsevier, vol. 239(2), pages 437-448.
  • Handle: RePEc:eee:ejores:v:239:y:2014:i:2:p:437-448
    DOI: 10.1016/j.ejor.2014.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714004172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trukhanov, Svyatoslav & Ntaimo, Lewis & Schaefer, Andrew, 2010. "Adaptive multicut aggregation for two-stage stochastic linear programs with recourse," European Journal of Operational Research, Elsevier, vol. 206(2), pages 395-406, October.
    2. Wolf, Christian & Koberstein, Achim, 2013. "Dynamic sequencing and cut consolidation for the parallel hybrid-cut nested L-shaped method," European Journal of Operational Research, Elsevier, vol. 230(1), pages 143-156.
    3. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    4. K. A. Ariyawansa & Andrew J. Felt, 2004. "On a New Collection of Stochastic Linear Programming Test Problems," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 291-299, August.
    5. Wim Ackooij & Welington Oliveira, 2014. "Level bundle methods for constrained convex optimization with various oracles," Computational Optimization and Applications, Springer, vol. 57(3), pages 555-597, April.
    6. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    2. Li, Mo & Guo, Ping, 2015. "A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 155(C), pages 53-66.
    3. Blanchot, Xavier & Clautiaux, François & Detienne, Boris & Froger, Aurélien & Ruiz, Manuel, 2023. "The Benders by batch algorithm: Design and stabilization of an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 202-216.
    4. W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
    5. Pavlo Glushko & Csaba I. Fábián & Achim Koberstein, 2022. "An L-shaped method with strengthened lift-and-project cuts," Computational Management Science, Springer, vol. 19(4), pages 539-565, October.
    6. Göke, Leonard & Schmidt, Felix & Kendziorski, Mario, 2024. "Stabilized Benders decomposition for energy planning under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 316(1), pages 183-199.
    7. Mínguez, R. & van Ackooij, W. & García-Bertrand, R., 2021. "Constraint generation for risk averse two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 288(1), pages 194-206.
    8. Babak Saleck Pay & Yongjia Song, 2020. "Partition-based decomposition algorithms for two-stage Stochastic integer programs with continuous recourse," Annals of Operations Research, Springer, vol. 284(2), pages 583-604, January.
    9. Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.
    10. Wim van Ackooij & Welington de Oliveira & Yongjia Song, 2018. "Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 57-70, February.
    11. Luisa I. Martínez-Merino & Diego Ponce & Justo Puerto, 2023. "Constraint relaxation for the discrete ordered median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 538-561, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolf, Christian & Koberstein, Achim, 2013. "Dynamic sequencing and cut consolidation for the parallel hybrid-cut nested L-shaped method," European Journal of Operational Research, Elsevier, vol. 230(1), pages 143-156.
    2. Blanchot, Xavier & Clautiaux, François & Detienne, Boris & Froger, Aurélien & Ruiz, Manuel, 2023. "The Benders by batch algorithm: Design and stabilization of an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 202-216.
    3. Babak Saleck Pay & Yongjia Song, 2020. "Partition-based decomposition algorithms for two-stage Stochastic integer programs with continuous recourse," Annals of Operations Research, Springer, vol. 284(2), pages 583-604, January.
    4. Fengqi You & Ignacio Grossmann, 2013. "Multicut Benders decomposition algorithm for process supply chain planning under uncertainty," Annals of Operations Research, Springer, vol. 210(1), pages 191-211, November.
    5. Murwan Siddig & Yongjia Song, 2022. "Adaptive partition-based SDDP algorithms for multistage stochastic linear programming with fixed recourse," Computational Optimization and Applications, Springer, vol. 81(1), pages 201-250, January.
    6. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    7. Wim Ackooij, 2017. "A comparison of four approaches from stochastic programming for large-scale unit-commitment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 119-147, March.
    8. Martin Biel & Mikael Johansson, 2022. "Efficient Stochastic Programming in Julia," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1885-1902, July.
    9. Fontaine, Pirmin & Minner, Stefan, 2018. "Benders decomposition for the Hazmat Transport Network Design Problem," European Journal of Operational Research, Elsevier, vol. 267(3), pages 996-1002.
    10. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    11. Halit Üster & Sung Ook Hwang, 2017. "Closed-Loop Supply Chain Network Design Under Demand and Return Uncertainty," Transportation Science, INFORMS, vol. 51(4), pages 1063-1085, November.
    12. Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.
    13. Wim van Ackooij & Welington de Oliveira & Yongjia Song, 2018. "Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 57-70, February.
    14. Pavlo Glushko & Csaba I. Fábián & Achim Koberstein, 2022. "An L-shaped method with strengthened lift-and-project cuts," Computational Management Science, Springer, vol. 19(4), pages 539-565, October.
    15. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    16. Julia Higle & Lei Zhao, 2012. "Adaptive and nonadaptive approaches to statistically based methods for solving stochastic linear programs: a computational investigation," Computational Optimization and Applications, Springer, vol. 51(2), pages 509-532, March.
    17. Álvaro Lorca & X. Andy Sun & Eugene Litvinov & Tongxin Zheng, 2016. "Multistage Adaptive Robust Optimization for the Unit Commitment Problem," Operations Research, INFORMS, vol. 64(1), pages 32-51, February.
    18. Placido dos Santos, Felipe Silva & Oliveira, Fabricio, 2019. "An enhanced L-Shaped method for optimizing periodic-review inventory control problems modeled via two-stage stochastic programming," European Journal of Operational Research, Elsevier, vol. 275(2), pages 677-693.
    19. Li, Na & Jiang, Yue & Zhang, Zhi-Hai, 2021. "A two-stage ambiguous stochastic program for electric vehicle charging station location problem with valet charging service," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 149-171.
    20. Weskamp, Christoph & Koberstein, Achim & Schwartz, Frank & Suhl, Leena & Voß, Stefan, 2019. "A two-stage stochastic programming approach for identifying optimal postponement strategies in supply chains with uncertain demand," Omega, Elsevier, vol. 83(C), pages 123-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:239:y:2014:i:2:p:437-448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.