IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v57y2014i3p555-597.html
   My bibliography  Save this article

Level bundle methods for constrained convex optimization with various oracles

Author

Listed:
  • Wim Ackooij
  • Welington Oliveira

Abstract

We propose restricted memory level bundle methods for minimizing constrained convex nonsmooth optimization problems whose objective and constraint functions are known through oracles (black-boxes) that might provide inexact information. Our approach is general and covers many instances of inexact oracles, such as upper, lower and on-demand accuracy oracles. We show that the proposed level bundle methods are convergent as long as the memory is restricted to at least four well chosen linearizations: two linearizations for the objective function, and two linearizations for the constraints. The proposed methods are particularly suitable for both joint chance-constrained problems and two-stage stochastic programs with risk measure constraints. The approach is assessed on realistic joint constrained energy problems, arising when dealing with robust cascaded-reservoir management. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Wim Ackooij & Welington Oliveira, 2014. "Level bundle methods for constrained convex optimization with various oracles," Computational Optimization and Applications, Springer, vol. 57(3), pages 555-597, April.
  • Handle: RePEc:spr:coopap:v:57:y:2014:i:3:p:555-597
    DOI: 10.1007/s10589-013-9610-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9610-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9610-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krzysztof C. Kiwiel, 2010. "An Inexact Bundle Approach to Cutting-Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 131-143, February.
    2. Arthur F. Veinott, 1967. "The Supporting Hyperplane Method for Unimodal Programming," Operations Research, INFORMS, vol. 15(1), pages 147-152, February.
    3. Gerd Infanger (ed.), 2011. "Stochastic Programming," International Series in Operations Research and Management Science, Springer, number 978-1-4419-1642-6, December.
    4. Wim Van Ackooij & René Henrion & Andris Möller & Riadh Zorgati, 2010. "On probabilistic constraints induced by rectangular sets and multivariate normal distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 535-549, June.
    5. Dentcheva, Darinka & Martinez, Gabriela, 2012. "Two-stage stochastic optimization problems with stochastic ordering constraints on the recourse," European Journal of Operational Research, Elsevier, vol. 219(1), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wim Ackooij, 2014. "Decomposition approaches for block-structured chance-constrained programs with application to hydro-thermal unit commitment," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(3), pages 227-253, December.
    2. René Henrion & Andris Möller, 2012. "A Gradient Formula for Linear Chance Constraints Under Gaussian Distribution," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 475-488, August.
    3. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    4. Darinka Dentcheva & Gabriela Martinez & Eli Wolfhagen, 2016. "Augmented Lagrangian Methods for Solving Optimization Problems with Stochastic-Order Constraints," Operations Research, INFORMS, vol. 64(6), pages 1451-1465, December.
    5. Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.
    6. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.
    7. Zhao, Kena & Ng, Tsan Sheng & Tan, Chin Hon & Pang, Chee Khiang, 2021. "An almost robust model for minimizing disruption exposures in supply systems," European Journal of Operational Research, Elsevier, vol. 295(2), pages 547-559.
    8. Alfred Auslender & Miguel A. Goberna & Marco A. López, 2009. "Penalty and Smoothing Methods for Convex Semi-Infinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 303-319, May.
    9. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    10. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    11. Tapio Westerlund & Ville-Pekka Eronen & Marko M. Mäkelä, 2018. "On solving generalized convex MINLP problems using supporting hyperplane techniques," Journal of Global Optimization, Springer, vol. 71(4), pages 987-1011, August.
    12. Ville-Pekka Eronen & Jan Kronqvist & Tapio Westerlund & Marko M. Mäkelä & Napsu Karmitsa, 2017. "Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems," Journal of Global Optimization, Springer, vol. 69(2), pages 443-459, October.
    13. Darinka Dentcheva & Eli Wolfhagen, 2016. "Two-Stage Optimization Problems with Multivariate Stochastic Order Constraints," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 1-22, February.
    14. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    15. Valerian Bulatov, 2010. "Methods of embedding-cutting off in problems of mathematical programming," Journal of Global Optimization, Springer, vol. 48(1), pages 3-15, September.
    16. H. P. Benson, 2010. "Branch-and-Bound Outer Approximation Algorithm for Sum-of-Ratios Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 1-18, July.
    17. Daniel Dörfler, 2022. "On the Approximation of Unbounded Convex Sets by Polyhedra," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 265-287, July.
    18. I. Bremer & R. Henrion & A. Möller, 2015. "Probabilistic constraints via SQP solver: application to a renewable energy management problem," Computational Management Science, Springer, vol. 12(3), pages 435-459, July.
    19. Holger Heitsch & René Henrion & Thomas Kleinert & Martin Schmidt, 2022. "On convex lower-level black-box constraints in bilevel optimization with an application to gas market models with chance constraints," Journal of Global Optimization, Springer, vol. 84(3), pages 651-685, November.
    20. Wim Ackooij, 2017. "A comparison of four approaches from stochastic programming for large-scale unit-commitment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 119-147, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:57:y:2014:i:3:p:555-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.