IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v51y2017i4p1063-1085.html
   My bibliography  Save this article

Closed-Loop Supply Chain Network Design Under Demand and Return Uncertainty

Author

Listed:
  • Halit Üster

    (Department of Engineering Management, Information, and Systems, Lyle School of Engineering, Southern Methodist University, Dallas, Texas 75275)

  • Sung Ook Hwang

    (NetJets, Columbus, Ohio 43219)

Abstract

This study considers an integrated closed-loop supply chain (CLSC) network design problem under uncertainty with regard to product demand and return quantities. To incorporate uncertainty in decision making, we formulate a two-stage stochastic mixed integer linear programming model to determine the optimal locations of (re)manufacturing and processing facilities along with their capacity levels and forward and reverse product flows in the CLSC network to minimize total design and expected operation costs. For the solution of the model and its analysis, we develop a Benders Decomposition approach enhanced for computational efficiency using induced constraints, strengthened Benders cuts, and multiple Benders cuts as well as mean-value scenario based lower-bounding inequalities obtained by dual subproblem disaggregation. Computational results illustrate that the enhancements provide substantial improvements in terms of solution times and quality. Using our model and the solution approach in a sample average approximation framework, we provide further analysis of network designs based on inspection location and recovery rates. Although product inspection at retailer or collection center locations generally reduce costs by avoiding unnecessary use of resources, our analysis also indicates that parameters such as product type and reason-for-return, expected recovery rates, inspection costs, and transportation costs can be instrumental in deciding where the return product inspection should take place and, in turn, dictating the overall cost as well as the structure of the CLSC network.

Suggested Citation

  • Halit Üster & Sung Ook Hwang, 2017. "Closed-Loop Supply Chain Network Design Under Demand and Return Uncertainty," Transportation Science, INFORMS, vol. 51(4), pages 1063-1085, November.
  • Handle: RePEc:inm:ortrsc:v:51:y:2017:i:4:p:1063-1085
    DOI: 10.1287/trsc.2015.0663
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2015.0663
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2015.0663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tony J. Van Roy, 1986. "A Cross Decomposition Algorithm for Capacitated Facility Location," Operations Research, INFORMS, vol. 34(1), pages 145-163, February.
    2. Listes, Ovidiu & Dekker, Rommert, 2005. "A stochastic approach to a case study for product recovery network design," European Journal of Operational Research, Elsevier, vol. 160(1), pages 268-287, January.
    3. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    4. Lee, Der-Horng & Dong, Meng, 2009. "Dynamic network design for reverse logistics operations under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 61-71, January.
    5. Francesca Maggioni & Stein Wallace, 2012. "Analyzing the quality of the expected value solution in stochastic programming," Annals of Operations Research, Springer, vol. 200(1), pages 37-54, November.
    6. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    7. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    8. Kristin Sahyouni & R. Canan Savaskan & Mark S. Daskin, 2007. "A Facility Location Model for Bidirectional Flows," Transportation Science, INFORMS, vol. 41(4), pages 484-499, November.
    9. Stein W. Wallace & Roger J-B Wets, 1995. "Preprocessing in Stochastic Programming: The Case of Capacitated Networks," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 44-62, February.
    10. Salema, Maria Isabel Gomes & Barbosa-Povoa, Ana Paula & Novais, Augusto Q., 2007. "An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1063-1077, June.
    11. Gilbert Laporte & François V. Louveaux & Luc van Hamme, 1994. "Exact Solution to a Location Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 28(2), pages 95-103, May.
    12. V. Daniel R. Guide , Jr. & Gilvan C. Souza & Luk N. Van Wassenhove & Joseph D. Blackburn, 2006. "Time Value of Commercial Product Returns," Management Science, INFORMS, vol. 52(8), pages 1200-1214, August.
    13. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    14. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiwari, Sunil & Sharma, Pankaj & Choi, Tsan-Ming & Lim, Andrew, 2023. "Blockchain and third-party logistics for global supply chain operations: Stakeholders’ perspectives and decision roadmap," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    2. Zhen, Lu & He, Xueting & Zhuge, Dan & Wang, Shuaian, 2024. "Primal decomposition for berth planning under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    3. Zhang, Yanzi & Berenguer, Gemma & Zhang, Zhi-Hai, 2024. "A subsidized reverse supply chain in the Chinese electronics industry," Omega, Elsevier, vol. 122(C).
    4. Liao, Haolan & Zhang, Qingyu & Li, Lu, 2023. "Optimal procurement strategy for multi-echelon remanufacturing systems under quality uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    5. Abdul Salam Khan & Catalin Iulian Pruncu & Razaullah Khan & Khawar Naeem & Abdul Ghaffar & Pakeeza Ashraf & Shah Room, 2020. "A Trade-off Analysis of Economic and Environmental Aspects of a Disruption Based Closed-Loop Supply Chain Network," Sustainability, MDPI, vol. 12(17), pages 1-28, August.
    6. Jian Zhou & Wenying Xia & Ke Wang & Hui Li & Qianyu Zhang, 2020. "Fuzzy Bi-Objective Closed-Loop Supply Chain Network Design Problem with Multiple Recovery Options," Sustainability, MDPI, vol. 12(17), pages 1-26, August.
    7. Luttiely Santos Oliveira & Ricardo Luiz Machado, 2021. "Application of optimization methods in the closed-loop supply chain: a literature review," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 357-400, February.
    8. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    9. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    10. Diabat, Ali & Jebali, Aida, 2021. "Multi-product and multi-period closed loop supply chain network design under take-back legislation," International Journal of Production Economics, Elsevier, vol. 231(C).
    11. Xin Zhang & Gang Zhao & Yingxiu Qi & Botang Li, 2019. "A Robust Fuzzy Optimization Model for Closed-Loop Supply Chain Networks Considering Sustainability," Sustainability, MDPI, vol. 11(20), pages 1-24, October.
    12. Hong Sun & Yan Li, 2023. "Optimal Acquisition and Production Policies for Remanufacturing with Quality Grading," Mathematics, MDPI, vol. 11(7), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vahab Vahdat & Mohammad Ali Vahdatzad, 2017. "Accelerated Benders’ Decomposition for Integrated Forward/Reverse Logistics Network Design under Uncertainty," Logistics, MDPI, vol. 1(2), pages 1-21, December.
    2. De Rosa, Vincenzo & Gebhard, Marina & Hartmann, Evi & Wollenweber, Jens, 2013. "Robust sustainable bi-directional logistics network design under uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 184-198.
    3. Gopalakrishnan Easwaran & Halit Üster, 2009. "Tabu Search and Benders Decomposition Approaches for a Capacitated Closed-Loop Supply Chain Network Design Problem," Transportation Science, INFORMS, vol. 43(3), pages 301-320, August.
    4. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    5. Rahman, Shams & Subramanian, Nachiappan, 2012. "Factors for implementing end-of-life computer recycling operations in reverse supply chains," International Journal of Production Economics, Elsevier, vol. 140(1), pages 239-248.
    6. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    7. Ayvaz, Berk & Bolat, Bersam & Aydın, Nezir, 2015. "Stochastic reverse logistics network design for waste of electrical and electronic equipment," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 391-404.
    8. Aghalari, Amin & Nur, Farjana & Marufuzzaman, Mohammad, 2020. "A Bender’s based nested decomposition algorithm to solve a stochastic inland waterway port management problem considering perishable product," International Journal of Production Economics, Elsevier, vol. 229(C).
    9. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    10. Mohammad Marufuzzaman & Farjana Nur & Amy E. Bednar & Mark Cowan, 2020. "Enhancing Benders decomposition algorithm to solve a combat logistics problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 161-198, March.
    11. Blanchot, Xavier & Clautiaux, François & Detienne, Boris & Froger, Aurélien & Ruiz, Manuel, 2023. "The Benders by batch algorithm: Design and stabilization of an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 202-216.
    12. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    13. Halit Üster & Gökhan Memişoğlu, 2018. "Biomass Logistics Network Design Under Price-Based Supply and Yield Uncertainty," Transportation Science, INFORMS, vol. 52(2), pages 474-492, March.
    14. Khatami, Maryam & Mahootchi, Masoud & Farahani, Reza Zanjirani, 2015. "Benders’ decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 1-21.
    15. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    16. Yuxiang Yang & Zuqing Huang & Qiang Patrick Qiang & Gengui Zhou, 2017. "A Mathematical Programming Model with Equilibrium Constraints for Competitive Closed-Loop Supply Chain Network Design," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-31, October.
    17. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    18. Xuehong Gao, 2019. "A Novel Reverse Logistics Network Design Considering Multi-Level Investments for Facility Reconstruction with Environmental Considerations," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    19. Mestre, Ana Maria & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana Paula, 2015. "Location–allocation approaches for hospital network planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(3), pages 791-806.
    20. S. Ayca Erdogan & Brian Denton, 2013. "Dynamic Appointment Scheduling of a Stochastic Server with Uncertain Demand," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 116-132, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:51:y:2017:i:4:p:1063-1085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.