IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v30y2018i1p57-70.html
   My bibliography  Save this article

Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse

Author

Listed:
  • Wim van Ackooij

    (Électricité de France Research & Development, OSIRIS, 91120 Palaiseau, France)

  • Welington de Oliveira

    (Department of Applied Mathematics, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550, Brazil)

  • Yongjia Song

    (Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia 23284)

Abstract

We present a computational study of several strategies to solve two-stage stochastic linear programs by integrating the adaptive partition-based approach with level decomposition. A partition-based formulation is a relaxation of the original stochastic program, obtained by aggregating variables and constraints according to a scenario partition. Partition refinements are guided by the optimal second-stage dual vectors computed at certain first-stage solutions. The proposed approaches rely on the level decomposition with on-demand accuracy to dynamically adjust partitions until an optimal solution is found. Numerical experiments on a large set of test problems including instances with up to one hundred thousand scenarios show the effectiveness of the proposed approaches.

Suggested Citation

  • Wim van Ackooij & Welington de Oliveira & Yongjia Song, 2018. "Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 57-70, February.
  • Handle: RePEc:inm:orijoc:v:30:y:2018:i:1:p:57-70
    DOI: 10.1287/ijoc.2017.0765
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2017.0765
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2017.0765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. E. Wright, 1994. "Primal-Dual Aggregation and Disaggregation for Stochastic Linear Programs," Mathematics of Operations Research, INFORMS, vol. 19(4), pages 893-908, November.
    2. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    3. Wim Ackooij, 2017. "A comparison of four approaches from stochastic programming for large-scale unit-commitment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 119-147, March.
    4. Wim Ackooij & Welington Oliveira, 2014. "Level bundle methods for constrained convex optimization with various oracles," Computational Optimization and Applications, Springer, vol. 57(3), pages 555-597, April.
    5. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    6. Michael S. Casey & Suvrajeet Sen, 2005. "The Scenario Generation Algorithm for Multistage Stochastic Linear Programming," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 615-631, August.
    7. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    8. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    9. Wolf, Christian & Fábián, Csaba I. & Koberstein, Achim & Suhl, Leena, 2014. "Applying oracles of on-demand accuracy in two-stage stochastic programming – A computational study," European Journal of Operational Research, Elsevier, vol. 239(2), pages 437-448.
    10. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    11. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    12. Lemaréchal, C. & Nemirovskii, A. & Nesterov, Y., 1995. "New variants of bundle methods," LIDAM Reprints CORE 1166, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    2. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    3. Jiménez, Diego & Angulo, Alejandro & Street, Alexandre & Mancilla-David, Fernando, 2023. "A closed-loop data-driven optimization framework for the unit commitment problem: A Q-learning approach under real-time operation," Applied Energy, Elsevier, vol. 330(PB).
    4. Mínguez, R. & van Ackooij, W. & García-Bertrand, R., 2021. "Constraint generation for risk averse two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 288(1), pages 194-206.
    5. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    6. Young Woong Park, 2021. "Optimization for L 1 -Norm Error Fitting via Data Aggregation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 120-142, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mínguez, R. & van Ackooij, W. & García-Bertrand, R., 2021. "Constraint generation for risk averse two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 288(1), pages 194-206.
    2. Blanchot, Xavier & Clautiaux, François & Detienne, Boris & Froger, Aurélien & Ruiz, Manuel, 2023. "The Benders by batch algorithm: Design and stabilization of an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 202-216.
    3. Babak Saleck Pay & Yongjia Song, 2020. "Partition-based decomposition algorithms for two-stage Stochastic integer programs with continuous recourse," Annals of Operations Research, Springer, vol. 284(2), pages 583-604, January.
    4. Göke, Leonard & Schmidt, Felix & Kendziorski, Mario, 2024. "Stabilized Benders decomposition for energy planning under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 316(1), pages 183-199.
    5. W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
    6. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    7. Wim Ackooij & Nicolas Lebbe & Jérôme Malick, 2017. "Regularized decomposition of large scale block-structured robust optimization problems," Computational Management Science, Springer, vol. 14(3), pages 393-421, July.
    8. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    9. Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.
    10. Pedro Borges, 2022. "Cut-sharing across trees and efficient sequential sampling for SDDP with uncertainty in the RHS," Computational Optimization and Applications, Springer, vol. 82(3), pages 617-647, July.
    11. Alexander Franz & Julia Rieck & Jürgen Zimmermann, 2019. "Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages," Annals of Operations Research, Springer, vol. 274(1), pages 241-265, March.
    12. Xiaotie Chen & David L. Woodruff, 2024. "Distributions and bootstrap for data-based stochastic programming," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    13. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    14. Murwan Siddig & Yongjia Song, 2022. "Adaptive partition-based SDDP algorithms for multistage stochastic linear programming with fixed recourse," Computational Optimization and Applications, Springer, vol. 81(1), pages 201-250, January.
    15. Yunmei Chen & Xiaojing Ye & Wei Zhang, 2020. "Acceleration techniques for level bundle methods in weakly smooth convex constrained optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 411-432, November.
    16. Haodong Yu & Jie Sun & Yanjun Wang, 2021. "A time-consistent Benders decomposition method for multistage distributionally robust stochastic optimization with a scenario tree structure," Computational Optimization and Applications, Springer, vol. 79(1), pages 67-99, May.
    17. Butyn, Emerson & Karas, Elizabeth W. & de Oliveira, Welington, 2022. "A derivative-free trust-region algorithm with copula-based models for probability maximization problems," European Journal of Operational Research, Elsevier, vol. 298(1), pages 59-75.
    18. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    19. Daniel Kuhn, 2009. "An Information-Based Approximation Scheme for Stochastic Optimization Problems in Continuous Time," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 428-444, May.
    20. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:30:y:2018:i:1:p:57-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.