IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i1p183-199.html
   My bibliography  Save this article

Stabilized Benders decomposition for energy planning under climate uncertainty

Author

Listed:
  • Göke, Leonard
  • Schmidt, Felix
  • Kendziorski, Mario

Abstract

This paper applies Benders decomposition to two-stage stochastic problems for energy planning under climate uncertainty, a key problem for the design of renewable energy systems. To improve performance, we adapt various refinements for Benders decomposition to the problem’s characteristics—a simple continuous master-problem, and few but large sub-problems. The primary focus is stabilization, specifically comparing established bundle methods to a quadratic trust-region approach for continuous problems.

Suggested Citation

  • Göke, Leonard & Schmidt, Felix & Kendziorski, Mario, 2024. "Stabilized Benders decomposition for energy planning under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 316(1), pages 183-199.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:1:p:183-199
    DOI: 10.1016/j.ejor.2024.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724000353
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2019. "Importance subsampling: improving power system planning under climate-based uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Jean-François Cordeau & Federico Pasin & Marius Solomon, 2006. "An integrated model for logistics network design," Annals of Operations Research, Springer, vol. 144(1), pages 59-82, April.
    3. Wolf, Christian & Fábián, Csaba I. & Koberstein, Achim & Suhl, Leena, 2014. "Applying oracles of on-demand accuracy in two-stage stochastic programming – A computational study," European Journal of Operational Research, Elsevier, vol. 239(2), pages 437-448.
    4. Teichgraeber, Holger & Küpper, Lucas Elias & Brandt, Adam R., 2021. "Designing reliable future energy systems by iteratively including extreme periods in time-series aggregation," Applied Energy, Elsevier, vol. 304(C).
    5. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    6. Todd Levin & John Bistline & Ramteen Sioshansi & Wesley J. Cole & Jonghwan Kwon & Scott P. Burger & George W. Crabtree & Jesse D. Jenkins & Rebecca O’Neil & Magnus Korpås & Sonja Wogrin & Benjamin F. , 2023. "Energy storage solutions to decarbonize electricity through enhanced capacity expansion modelling," Nature Energy, Nature, vol. 8(11), pages 1199-1208, November.
    7. A. Pessoa & R. Sadykov & E. Uchoa & F. Vanderbeck, 2018. "Automation and Combination of Linear-Programming Based Stabilization Techniques in Column Generation," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 339-360, May.
    8. Elisabeth Zeyen & Marta Victoria & Tom Brown, 2023. "Endogenous learning for green hydrogen in a sector-coupled energy model for Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. R. E. Marsten & W. W. Hogan & J. W. Blankenship, 1975. "The B oxstep Method for Large-Scale Optimization," Operations Research, INFORMS, vol. 23(3), pages 389-405, June.
    10. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    11. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    12. Grochowicz, Aleksander & van Greevenbroek, Koen & Benth, Fred Espen & Zeyringer, Marianne, 2023. "Intersecting near-optimal spaces: European power systems with more resilience to weather variability," Energy Economics, Elsevier, vol. 118(C).
    13. René Brandenberg & Paul Stursberg, 2021. "Refined cut selection for benders decomposition: applied to network capacity expansion problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 383-412, December.
    14. Wim Ackooij & Welington Oliveira, 2014. "Level bundle methods for constrained convex optimization with various oracles," Computational Optimization and Applications, Springer, vol. 57(3), pages 555-597, April.
    15. Anthony Papavasiliou & Yuting Mou & Léopold Cambier & Damien Scieur, 2018. "Application of stochastic dual dynamic programming to the real-time dispatch of storage under renewable supply uncertainty," LIDAM Reprints CORE 2943, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Timo Lohmann & Steffen Rebennack, 2017. "Tailored Benders Decomposition for a Long-Term Power Expansion Model with Short-Term Demand Response," Management Science, INFORMS, vol. 63(6), pages 2027-2048, June.
    17. Wang, Jiadong & Wang, Jianhui & Liu, Cong & Ruiz, Juan P., 2013. "Stochastic unit commitment with sub-hourly dispatch constraints," Applied Energy, Elsevier, vol. 105(C), pages 418-422.
    18. Anthony Papavasiliou & Yuting Mou & Léopold Cambier & Damien Scieur, 2018. "Application of stochastic dual dynamic programming to the real-time dispatch of storage under renewable supply uncertainty," LIDAM Reprints CORE 3044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    20. Lemaréchal, C. & Nemirovskii, A. & Nesterov, Y., 1995. "New variants of bundle methods," LIDAM Reprints CORE 1166, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    22. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    23. Ohlendorf, Nils & Schill, Wolf-Peter, 2020. "Frequency and duration of low-wind-power events in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(8).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wim van Ackooij & Welington de Oliveira & Yongjia Song, 2018. "Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 57-70, February.
    2. Blanchot, Xavier & Clautiaux, François & Detienne, Boris & Froger, Aurélien & Ruiz, Manuel, 2023. "The Benders by batch algorithm: Design and stabilization of an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 202-216.
    3. Mínguez, R. & van Ackooij, W. & García-Bertrand, R., 2021. "Constraint generation for risk averse two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 288(1), pages 194-206.
    4. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    5. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    6. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric & Van Woensel, Tom, 2020. "A Benders decomposition-based approach for logistics service network design," European Journal of Operational Research, Elsevier, vol. 286(2), pages 523-537.
    7. Pickering, Bryn & Choudhary, Ruchi, 2021. "Quantifying resilience in energy systems with out-of-sample testing," Applied Energy, Elsevier, vol. 285(C).
    8. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2023. "Reducing climate risk in energy system planning: A posteriori time series aggregation for models with storage," Applied Energy, Elsevier, vol. 334(C).
    9. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric, 2022. "Meta partial benders decomposition for the logistics service network design problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 473-489.
    10. Weninger, Dieter & Wolsey, Laurence A., 2023. "Benders-type branch-and-cut algorithms for capacitated facility location with single-sourcing," European Journal of Operational Research, Elsevier, vol. 310(1), pages 84-99.
    11. Müller, Inga M., 2022. "Energy system modeling with aggregated time series: A profiling approach," Applied Energy, Elsevier, vol. 322(C).
    12. Kiho Seo & Seulgi Joung & Chungmok Lee & Sungsoo Park, 2022. "A Closest Benders Cut Selection Scheme for Accelerating the Benders Decomposition Algorithm," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2804-2827, September.
    13. Pavlo Glushko & Csaba I. Fábián & Achim Koberstein, 2022. "An L-shaped method with strengthened lift-and-project cuts," Computational Management Science, Springer, vol. 19(4), pages 539-565, October.
    14. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
    15. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    16. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    17. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Ken Oshiro & Shinichiro Fujimori, 2024. "Limited impact of hydrogen co-firing on prolonging fossil-based power generation under low emissions scenarios," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Morgenthaler, Simon & Dünzen, Justus & Stadler, Ingo & Witthaut, Dirk, 2021. "Three stages in the co-transformation of the energy and mobility sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:1:p:183-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.