IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v51y2012i2p509-532.html
   My bibliography  Save this article

Adaptive and nonadaptive approaches to statistically based methods for solving stochastic linear programs: a computational investigation

Author

Listed:
  • Julia Higle
  • Lei Zhao

Abstract

No abstract is available for this item.

Suggested Citation

  • Julia Higle & Lei Zhao, 2012. "Adaptive and nonadaptive approaches to statistically based methods for solving stochastic linear programs: a computational investigation," Computational Optimization and Applications, Springer, vol. 51(2), pages 509-532, March.
  • Handle: RePEc:spr:coopap:v:51:y:2012:i:2:p:509-532
    DOI: 10.1007/s10589-010-9366-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-010-9366-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-010-9366-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    2. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Biel & Mikael Johansson, 2022. "Efficient Stochastic Programming in Julia," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1885-1902, July.
    2. Wolf, Christian & Koberstein, Achim, 2013. "Dynamic sequencing and cut consolidation for the parallel hybrid-cut nested L-shaped method," European Journal of Operational Research, Elsevier, vol. 230(1), pages 143-156.
    3. Halit Üster & Sung Ook Hwang, 2017. "Closed-Loop Supply Chain Network Design Under Demand and Return Uncertainty," Transportation Science, INFORMS, vol. 51(4), pages 1063-1085, November.
    4. Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.
    5. Blanchot, Xavier & Clautiaux, François & Detienne, Boris & Froger, Aurélien & Ruiz, Manuel, 2023. "The Benders by batch algorithm: Design and stabilization of an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 202-216.
    6. Fengqi You & Ignacio Grossmann, 2013. "Multicut Benders decomposition algorithm for process supply chain planning under uncertainty," Annals of Operations Research, Springer, vol. 210(1), pages 191-211, November.
    7. Wolf, Christian & Fábián, Csaba I. & Koberstein, Achim & Suhl, Leena, 2014. "Applying oracles of on-demand accuracy in two-stage stochastic programming – A computational study," European Journal of Operational Research, Elsevier, vol. 239(2), pages 437-448.
    8. A. Ruszczynski, 1993. "Regularized Decomposition of Stochastic Programs: Algorithmic Techniques and Numerical Results," Working Papers wp93021, International Institute for Applied Systems Analysis.
    9. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    10. Güzin Bayraksan & David P. Morton, 2011. "A Sequential Sampling Procedure for Stochastic Programming," Operations Research, INFORMS, vol. 59(4), pages 898-913, August.
    11. Li, Y.P. & Huang, G.H. & Li, M.W., 2014. "An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty," Renewable Energy, Elsevier, vol. 62(C), pages 31-46.
    12. A. Ruszczynski & A. Swietanowski, 1996. "On the Regularized Decomposition Method for Two Stage Stochastic Linear Problems," Working Papers wp96014, International Institute for Applied Systems Analysis.
    13. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    14. Riis, Morten & Andersen, Kim Allan, 2005. "Applying the minimax criterion in stochastic recourse programs," European Journal of Operational Research, Elsevier, vol. 165(3), pages 569-584, September.
    15. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    16. Xiaotie Chen & David L. Woodruff, 2024. "Distributions and bootstrap for data-based stochastic programming," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    17. Shi, Qingxin & Li, Fangxing & Dong, Jin & Olama, Mohammed & Wang, Xiaofei & Winstead, Chris & Kuruganti, Teja, 2022. "Co-optimization of repairs and dynamic network reconfiguration for improved distribution system resilience," Applied Energy, Elsevier, vol. 318(C).
    18. Jörn Dunkel & Stefan Weber, 2010. "Stochastic Root Finding and Efficient Estimation of Convex Risk Measures," Operations Research, INFORMS, vol. 58(5), pages 1505-1521, October.
    19. Soham Ghosh & Sujay Mukhoti, 2023. "Non-parametric generalised newsvendor model," Annals of Operations Research, Springer, vol. 321(1), pages 241-266, February.
    20. Bhuiyan, Tanveer Hossain & Medal, Hugh R. & Harun, Sarah, 2020. "A stochastic programming model with endogenous and exogenous uncertainty for reliable network design under random disruption," European Journal of Operational Research, Elsevier, vol. 285(2), pages 670-694.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:51:y:2012:i:2:p:509-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.