IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v220y2012i1p79-84.html
   My bibliography  Save this article

Relative efficiency measurement: The problem of a missing output in a subset of decision making units

Author

Listed:
  • Cook, Wade D.
  • Harrison, Julie
  • Rouse, Paul
  • Zhu, Joe

Abstract

Data envelopment analysis (DEA), as originally proposed by Charnes et al. (1978) viewed the efficiency measurement problem as one wherein each of a set of DMUs uses the same input and output measures, albeit in amounts that vary from one DMU to another. In some situations, however, the assumption that all DMUs use the same measures may fail. While there is a well known literature related to the problems of missing data and ‘zeros’ in the data, we argue that there is a difference between the situation where a DMU commits the resources to produce an output (but fails to do so, or else a non-zero amount exists but is unknown), and the situation where the DMU intentionally does not produce that output. In the current paper we examine the problem of measuring the efficiency of a set of steel fabrication plants wherein a subset of those plants produce one less than the full set of outputs produced by the others. We develop a DEA-type model for handling this missing output problem.

Suggested Citation

  • Cook, Wade D. & Harrison, Julie & Rouse, Paul & Zhu, Joe, 2012. "Relative efficiency measurement: The problem of a missing output in a subset of decision making units," European Journal of Operational Research, Elsevier, vol. 220(1), pages 79-84.
  • Handle: RePEc:eee:ejores:v:220:y:2012:i:1:p:79-84
    DOI: 10.1016/j.ejor.2012.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712000422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Rolf Färe & Shawna Grosskopf, 2002. "Two Perspectives on DEA: Unveiling the Link between CCR and Shephard," Journal of Productivity Analysis, Springer, vol. 17(1), pages 41-47, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Wang & Tao Zhang & Xi Wang, 2024. "High-speed railways reduces carbon emissions: mediating effects of green innovation and the resilience of environmental investment," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-24, December.
    2. Wade D. Cook & Julie Harrison & Raha Imanirad & Paul Rouse & Joe Zhu, 2013. "Data Envelopment Analysis with Nonhomogeneous DMUs," Operations Research, INFORMS, vol. 61(3), pages 666-676, June.
    3. Wu, Jie & Li, Mingjun & Zhu, Qingyuan & Zhou, Zhixiang & Liang, Liang, 2019. "Energy and environmental efficiency measurement of China's industrial sectors: A DEA model with non-homogeneous inputs and outputs," Energy Economics, Elsevier, vol. 78(C), pages 468-480.
    4. Ang, Sheng & Chen, Chien-Ming, 2016. "Pitfalls of decomposition weights in the additive multi-stage DEA model," Omega, Elsevier, vol. 58(C), pages 139-153.
    5. Xiaofei Ma & Qiuyan Zhong, 2016. "Missing value imputation method for disaster decision-making using K nearest neighbor," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 767-781, March.
    6. Cao, Ting & Cook, Wade D. & Kristal, M. Murat, 2022. "Has the technological investment been worth it? Assessing the aggregate efficiency of non-homogeneous bank holding companies in the digital age," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    7. Josef Jablonský, 2019. "Data Envelopment Analysis Models in Non-Homogeneous Environment," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 67(6), pages 1535-1540.
    8. Zhu, Weiwei & Yu, Yu & Sun, Panpan, 2018. "Data envelopment analysis cross-like efficiency model for non-homogeneous decision-making units: The case of United States companies’ low-carbon investment to attain corporate sustainability," European Journal of Operational Research, Elsevier, vol. 269(1), pages 99-110.
    9. Liang, Liang & Cook, Wade D. & Zhu, Joe, 2016. "DEA models for non-homogeneous DMUs with different input configurationsAuthor-Name: Li, WangHong," European Journal of Operational Research, Elsevier, vol. 254(3), pages 946-956.
    10. Yu Zhu & Feng Yang & Bengang Gong & Wei Zeng, 2023. "RETRACTED ARTICLE: Assessing the efficiency of innovation entities in China: evidence from a nonhomogeneous data envelopment analysis and Tobit," Electronic Commerce Research, Springer, vol. 23(1), pages 175-205, March.
    11. Fukuyama, Hirofumi & Song, Yao-yao & Ren, Xian-tong & Yang, Guo-liang, 2022. "Using a novel DEA-based model to investigate capacity utilization of Chinese firms," Omega, Elsevier, vol. 106(C).
    12. Fukuyama, Hirofumi & Liu, Hui-hui & Song, Yao-yao & Yang, Guo-liang, 2021. "Measuring the capacity utilization of the 48 largest iron and steel enterprises in China," European Journal of Operational Research, Elsevier, vol. 288(2), pages 648-665.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Whittaker, Gerald & Confesor Jr., Remegio & Griffith, Stephen M. & Färe, Rolf & Grosskopf, Shawna & Steiner, Jeffrey J. & Mueller-Warrant, George W. & Banowetz, Gary M., 2009. "A hybrid genetic algorithm for multiobjective problems with activity analysis-based local search," European Journal of Operational Research, Elsevier, vol. 193(1), pages 195-203, February.
    2. Mika Kortelainen & Timo Kuosmanen, 2007. "Eco-efficiency analysis of consumer durables using absolute shadow prices," Journal of Productivity Analysis, Springer, vol. 28(1), pages 57-69, October.
    3. R Färe & S Grosskopf & D Margaritis, 2011. "The diet problem and DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1420-1422, July.
    4. Rolf Färe & Shawna Grosskopf & Giannis Karagiannis & Dimitris Margaritis, 2017. "Data envelopment analysis and its related linear programming models," Annals of Operations Research, Springer, vol. 250(1), pages 37-43, March.
    5. Nguyen Truc Le & Nguyen An Thinh & Nguyen Thi Vinh Ha & Nguyen Dinh Tien & Nguyen Duc Lam & Nguyen Van Hong & Nguyen Tat Tuan & Ta Van Hanh & Nguyen Ngoc Khanh & Nguyen Ngoc Thanh & Luc Hens, 2022. "Measuring water resource use efficiency of the Dong Nai River Basin (Vietnam): an application of the two-stage data envelopment analysis (DEA)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12427-12445, October.
    6. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    7. repec:lan:wpaper:1115 is not listed on IDEAS
    8. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    9. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    10. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    11. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    12. Bowlin, W. F., 1995. "A characterization of the financial condition of the United States' aerospace-defense industrial base," Omega, Elsevier, vol. 23(5), pages 539-555, October.
    13. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    14. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    15. Helmi Hammami & Thanh Ngo & David Tripe & Dinh-Tri Vo, 2022. "Ranking with a Euclidean common set of weights in data envelopment analysis: with application to the Eurozone banking sector," Annals of Operations Research, Springer, vol. 311(2), pages 675-694, April.
    16. Khanal, Aditya & Koirala, Krishna & Regmi, Madhav, 2016. "Do Financial Constraints Affect Production Efficiency in Drought Prone Areas? A Case from Indonesian Rice Growers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230087, Southern Agricultural Economics Association.
    17. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    18. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    19. Bogetoft, Peter & Nielsen, Kurt, 2003. "Yardstick Based Procurement Design In Natural Resource Management," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25910, International Association of Agricultural Economists.
    20. Singer, Marcos & Donoso, Patricio & Poblete, Francisco, 2002. "Semi-autonomous planning using linear programming in the Chilean General Treasury," European Journal of Operational Research, Elsevier, vol. 140(2), pages 517-529, July.
    21. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:220:y:2012:i:1:p:79-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.