IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i3p666-676.html
   My bibliography  Save this article

Data Envelopment Analysis with Nonhomogeneous DMUs

Author

Listed:
  • Wade D. Cook

    (Schulich School of Business, York University, Toronto, Ontario M3J 1P3, Canada)

  • Julie Harrison

    (Department of Accounting and Finance, University of Auckland, Auckland 1142, New Zealand)

  • Raha Imanirad

    (Schulich School of Business, York University, Toronto, Ontario M3J 1P3, Canada)

  • Paul Rouse

    (Department of Accounting and Finance, University of Auckland, Auckland 1142, New Zealand)

  • Joe Zhu

    (School of Business, Worcester Polytechnic Institute, Worcester, Massachusetts 01609)

Abstract

Data envelopment analysis (DEA), as originally proposed, is a methodology for evaluating the relative efficiencies of a set of homogeneous decision-making units (DMUs) in the sense that each uses the same input and output measures (in varying amounts from one DMU to another). In some situations, however, the assumption of homogeneity among DMUs may not apply. As an example, consider the case where the DMUs are plants in the same industry that may not all produce the same products. Evaluating efficiencies in the absence of homogeneity gives rise to the issue of how to fairly compare a DMU to other units, some of which may not be exactly in the same “business.” A related problem, and one that has been examined extensively in the literature, is the missing data problem; a DMU produces a certain output, but its value is not known. One approach taken to address this problem is to “create” a value for the missing output (e.g., substituting zero, or by taking the average of known values), and use it to fill in the gaps. In the present setting, however, the issue isn't that the data for the output is missing for certain DMUs, but rather that the output isn't produced. We argue herein that if a DMU has chosen not to produce a certain output, or for any reason cannot produce that output, and therefore does not put the resources in place to do so, then it would be inappropriate to artificially assign that DMU a zero value or some “average” value for the nonexistent factor. Specifically, the desire is to fairly evaluate a DMU for what it does, rather than penalize or credit it for what it doesn't do. In the current paper we present DEA-based models for evaluating the relative efficiencies of a set of DMUs where the requirement of homogeneity is relaxed. We then use these models to examine the efficiencies of a set of manufacturing plants.

Suggested Citation

  • Wade D. Cook & Julie Harrison & Raha Imanirad & Paul Rouse & Joe Zhu, 2013. "Data Envelopment Analysis with Nonhomogeneous DMUs," Operations Research, INFORMS, vol. 61(3), pages 666-676, June.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:666-676
    DOI: 10.1287/opre.2013.1173
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2013.1173
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2013.1173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pulley, Lawrence B & Braunstein, Yale M, 1992. "A Composite Cost Function for Multiproduct Firms with an Application to Economies of Scope in Banking," The Review of Economics and Statistics, MIT Press, vol. 74(2), pages 221-230, May.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Wade D. Cook & Joe Zhu, 2011. "Multiple Variable Proportionality in Data Envelopment Analysis," Operations Research, INFORMS, vol. 59(4), pages 1024-1032, August.
    4. Cook, Wade D. & Hababou, Moez, 2001. "Sales performance measurement in bank branches," Omega, Elsevier, vol. 29(4), pages 299-307, August.
    5. Wade Cook & Moez Hababou & Hans Tuenter, 2000. "Multicomponent Efficiency Measurement and Shared Inputs in Data Envelopment Analysis: An Application to Sales and Service Performance in Bank Branches," Journal of Productivity Analysis, Springer, vol. 14(3), pages 209-224, November.
    6. Thompson, Russell G. & Langemeier, Larry N. & Lee, Chih-Tah & Lee, Euntaik & Thrall, Robert M., 1990. "The role of multiplier bounds in efficiency analysis with application to Kansas farming," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 93-108.
    7. Cook, Wade D. & Harrison, Julie & Rouse, Paul & Zhu, Joe, 2012. "Relative efficiency measurement: The problem of a missing output in a subset of decision making units," European Journal of Operational Research, Elsevier, vol. 220(1), pages 79-84.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raha Imanirad & Wade D. Cook & Joe Zhu, 2013. "Partial input to output impacts in DEA: Production considerations and resource sharing among business subunits," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(3), pages 190-207, April.
    2. W D Cook & J Zhu, 2011. "Output-specific input-assurance regions in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1881-1887, October.
    3. Cao, Ting & Cook, Wade D. & Kristal, M. Murat, 2022. "Has the technological investment been worth it? Assessing the aggregate efficiency of non-homogeneous bank holding companies in the digital age," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    4. Cook, Wade D. & Zhu, Joe, 2007. "Classifying inputs and outputs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 180(2), pages 692-699, July.
    5. Avilés-Sacoto, Sonia Valeria & Cook, Wade D. & Güemes-Castorena, David & Zhu, Joe, 2020. "Modelling Efficiency in Regional Innovation Systems: A Two-Stage Data Envelopment Analysis Problem with Shared Outputs within Groups of Decision-Making Units," European Journal of Operational Research, Elsevier, vol. 287(2), pages 572-582.
    6. Ang, Sheng & Chen, Chien-Ming, 2016. "Pitfalls of decomposition weights in the additive multi-stage DEA model," Omega, Elsevier, vol. 58(C), pages 139-153.
    7. Majid Azadi & Balal Karimi & William Ho & Reza Farzipoor Saen, 2022. "Assessing green performance of power plants by multiple hybrid returns to scale technologies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1177-1211, December.
    8. Sonia Valeria Avilés-Sacoto & Wade D. Cook & David Güemes-Castorena & Francisco Benita & Hector Ceballos & Joe Zhu, 2018. "Evaluating the Efficiencies of Academic Research Groups: A Problem of Shared Outputs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-22, December.
    9. Wade D. Cook & Joe Zhu, 2006. "Incorporating Multiprocess Performance Standards into the DEA Framework," Operations Research, INFORMS, vol. 54(4), pages 656-665, August.
    10. Roets, Bart & Verschelde, Marijn & Christiaens, Johan, 2018. "Multi-output efficiency and operational safety: An analysis of railway traffic control centre performance," European Journal of Operational Research, Elsevier, vol. 271(1), pages 224-237.
    11. Lorenzo Castelli & Raffaele Pesenti & Walter Ukovich, 2010. "A classification of DEA models when the internal structure of the Decision Making Units is considered," Annals of Operations Research, Springer, vol. 173(1), pages 207-235, January.
    12. Victor V. Podinovski & Ole Bent Olesen & Cláudia S. Sarrico, 2018. "Nonparametric Production Technologies with Multiple Component Processes," Operations Research, INFORMS, vol. 66(1), pages 282-300, January.
    13. Wade Cook & Joe Zhu, 2010. "Context-dependent performance standards in DEA," Annals of Operations Research, Springer, vol. 173(1), pages 163-175, January.
    14. Wade D. Cook & Joe Zhu, 2008. "CAR-DEA: Context-Dependent Assurance Regions in DEA," Operations Research, INFORMS, vol. 56(1), pages 69-78, February.
    15. Yang, J.B. & Wong, B.Y.H. & Xu, D.L. & Liu, X.B. & Steuer, R.E., 2010. "Integrated bank performance assessment and management planning using hybrid minimax reference point - DEA approach," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1506-1518, December.
    16. Shimshak, Daniel G. & Lenard, Melanie L. & Klimberg, Ronald K., 2009. "Incorporating quality into data envelopment analysis of nursing home performance: A case study," Omega, Elsevier, vol. 37(3), pages 672-685, June.
    17. Paradi, Joseph C. & Rouatt, Stephen & Zhu, Haiyan, 2011. "Two-stage evaluation of bank branch efficiency using data envelopment analysis," Omega, Elsevier, vol. 39(1), pages 99-109, January.
    18. Giokas, Dimitris I., 2008. "Assessing the efficiency in operations of a large Greek bank branch network adopting different economic behaviors," Economic Modelling, Elsevier, vol. 25(3), pages 559-574, May.
    19. Laurens Cherchye & Bram De Rock & Bart Dierynck & Filip Roodhooft & Jeroen Sabbe, 2013. "Opening the “Black Box” of Efficiency Measurement: Input Allocation in Multioutput Settings," Operations Research, INFORMS, vol. 61(5), pages 1148-1165, October.
    20. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2020. "Reprint of "Performance evaluation of China's high-tech innovation process :Analysis based on the innovation value chain"," Technovation, Elsevier, vol. 94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:666-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.