IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v311y2022i2d10.1007_s10479-020-03759-6.html
   My bibliography  Save this article

Ranking with a Euclidean common set of weights in data envelopment analysis: with application to the Eurozone banking sector

Author

Listed:
  • Helmi Hammami

    (Rennes School of Business)

  • Thanh Ngo

    (Massey University
    VNU University of Economics and Business)

  • David Tripe

    (Massey University)

  • Dinh-Tri Vo

    (IPAG Business School
    University of Economics Ho Chi Minh City)

Abstract

This paper provides a new method to define a Euclidean common set of weights (ECSW) in data development analysis (DEA) that (1) allows ranking both efficient and inefficient firms, (2) is more realistic in terms of determination of weights, and (3) generates rankings for banks consistent with their credit ratings. We first use DEA to determine the efficient frontier and then estimate a common set of weights that can minimize the Euclidean distance between the firms and that frontier. This process is illustrated by a simple numerical example and is extended to a real-life situation using the Eurozone banking sector. Our ECSW approach outperforms other common set of weights approaches in both numerical and real-life examples, and in terms of providing rankings consistent with banks’ credit ratings.

Suggested Citation

  • Helmi Hammami & Thanh Ngo & David Tripe & Dinh-Tri Vo, 2022. "Ranking with a Euclidean common set of weights in data envelopment analysis: with application to the Eurozone banking sector," Annals of Operations Research, Springer, vol. 311(2), pages 675-694, April.
  • Handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03759-6
    DOI: 10.1007/s10479-020-03759-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03759-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03759-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Laurent Botti & Sabri Boubaker & Amal Hamrouni & Bernardin Solonandrasana, 2014. "Corporate governance efficiency and internet financial reporting quality," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 13(1), pages 43-64, February.
    3. Fujii, Hidemichi & Managi, Shunsuke & Matousek, Roman, 2014. "Indian bank efficiency and productivity changes with undesirable outputs: A disaggregated approach," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 41-50.
    4. Berger, Allen N. & Humphrey, David B., 1997. "Efficiency of financial institutions: International survey and directions for future research," European Journal of Operational Research, Elsevier, vol. 98(2), pages 175-212, April.
    5. Wenbin Liu & John Sharp & Zhongmin Wu, 2006. "Preference, Production and Performance in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 145(1), pages 105-127, July.
    6. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Mette Asmild & Jens Hougaard & Dorte Kronborg, 2013. "Do efficiency scores depend on input mix? A statistical test and empirical illustration," Annals of Operations Research, Springer, vol. 211(1), pages 37-48, December.
    9. Fiordelisi, Franco & Marques-Ibanez, David & Molyneux, Phil, 2011. "Efficiency and risk in European banking," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1315-1326, May.
    10. Roll, Y & Golany, B., 1993. "Alternate methods of treating factor weights in DEA," Omega, Elsevier, vol. 21(1), pages 99-109, January.
    11. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    12. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    13. Altunbas, Yener & Liu, Ming-Hau & Molyneux, Philip & Seth, Rama, 2000. "Efficiency and risk in Japanese banking," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1605-1628, October.
    14. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    15. Ahmet Sensoy & Duc Khuong Nguyen & Ahmed Rostom & Erk Hacihasanoglu, 2019. "Dynamic integration and network structure of the EMU sovereign bond markets," Annals of Operations Research, Springer, vol. 281(1), pages 297-314, October.
    16. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    17. M Zohrehbandian & A Makui & A Alinezhad, 2010. "A compromise solution approach for finding common weights in DEA: an improvement to Kao and Hung's approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 604-610, April.
    18. Chang, Tzu-Pu & Hu, Jin-Li & Chou, Ray Yeutien & Sun, Lei, 2012. "The sources of bank productivity growth in China during 2002–2009: A disaggregation view," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1997-2006.
    19. Sealey, Calvin W, Jr & Lindley, James T, 1977. "Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions," Journal of Finance, American Finance Association, vol. 32(4), pages 1251-1266, September.
    20. Doyle, John R., 1995. "Multiattribute Choice for the Lazy Decision Maker: Let the Alternatives Decide!," Organizational Behavior and Human Decision Processes, Elsevier, vol. 62(1), pages 87-100, April.
    21. Bauer, Paul W. & Berger, Allen N. & Ferrier, Gary D. & Humphrey, David B., 1998. "Consistency Conditions for Regulatory Analysis of Financial Institutions: A Comparison of Frontier Efficiency Methods," Journal of Economics and Business, Elsevier, vol. 50(2), pages 85-114, March.
    22. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    23. Feng, Guohua & Wang, Chuan, 2018. "Why European banks are less profitable than U.S. banks: A decomposition approach," Journal of Banking & Finance, Elsevier, vol. 90(C), pages 1-16.
    24. Sepideh Kaffash & Marianna Marra, 2017. "Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds," Annals of Operations Research, Springer, vol. 253(1), pages 307-344, June.
    25. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, October.
    26. Sturm, Jan-Egbert & Williams, Barry, 2004. "Foreign bank entry, deregulation and bank efficiency: Lessons from the Australian experience," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1775-1799, July.
    27. Weiwei Zhu & Qian Zhang & Haiqing Wang, 2019. "Fixed costs and shared resources allocation in two-stage network DEA," Annals of Operations Research, Springer, vol. 278(1), pages 177-194, July.
    28. Panagiotis Tziogkidis & Kent Matthews & Dionisis Philippas, 2018. "The effects of sector reforms on the productivity of Greek banks: a step-by-step analysis of the pre-Euro era," Annals of Operations Research, Springer, vol. 266(1), pages 531-549, July.
    29. C Kao & H-T Hung, 2005. "Data envelopment analysis with common weights: the compromise solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1196-1203, October.
    30. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tu D. Q. Le & Thanh Ngo & Tin H. Ho & Dat T. Nguyen, 2022. "ICT as a Key Determinant of Efficiency: A Bootstrap-Censored Quantile Regression (BCQR) Analysis for Vietnamese Banks," IJFS, MDPI, vol. 10(2), pages 1-15, June.
    2. Thanh Ngo & Hai‐Dang Nguyen & Huong Ho & Vo‐Kien Nguyen & Thuy T. T. Dao & Hai T. H. Nguyen, 2021. "Assessing the important factors of sustainable agriculture development: An Indicateurs de Durabilité des Exploitations Agricoles‐Analytic Hierarchy Process study in the northern region of Vietnam," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 327-338, March.
    3. Nam Hyok Kim & Feng He & Kwon Ryong Hong & Hyok-Chol Kim & Sok-Min Han, 2024. "A new common weights DEA model based on cluster analysis," Operational Research, Springer, vol. 24(2), pages 1-35, June.
    4. Jiawei Yang, 2023. "Disentangling the sources of bank inefficiency: a two-stage network multi-directional efficiency analysis approach," Annals of Operations Research, Springer, vol. 326(1), pages 369-410, July.
    5. Sabri Boubaker & T.D.Q. Le & T. Ngo & R. Manita, 2023. "Predicting the Performance of MSMEs: A Hybrid DEA-machine Learning Approach," Post-Print hal-04434027, HAL.
    6. Thanh Ngo & Tu DQ Le & Dat T Nguyen & Tin H Ho, 2023. "Determinants Of Bank Performance: Revisiting The Role Of Ceo’S Personality Traits Using Graphology," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 26(2), pages 289-310, May.
    7. Kim, Nam Hyok & He, Feng & Kwon, O Chol, 2023. "Combining common-weights DEA window with the Malmquist index: A case of China’s iron and steel industry," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    8. Sabri Boubaker & T.D.Q. Le & T. Ngo, 2023. "Managing Bank Performance under COVID-19: A Novel Inverse DEA Efficiency Approach," Post-Print hal-04435441, HAL.
    9. Thanh Ngo & David Tripe & Duc Khuong Nguyen, 2024. "Estimating the productivity of US agriculture: The Fisher total factor productivity index for time series data with unknown prices," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 68(3), pages 701-712, July.
    10. Hamid Kiaei & Reza Kazemi Matin, 2022. "New common set of weights method in black-box and two-stage data envelopment analysis," Annals of Operations Research, Springer, vol. 309(1), pages 143-162, February.
    11. Mostafa Davtalab-Olyaie & Hadis Mahmudi-Baram & Masoud Asgharian, 2023. "Measuring individual efficiency and unit influence in centrally managed systems," Annals of Operations Research, Springer, vol. 321(1), pages 139-164, February.
    12. Xuan Thi Thanh Mai & Ha Thi Nhu Nguyen & Thanh Ngo & Tu D. Q. Le & Lien Phuong Nguyen, 2023. "Efficiency of the Islamic Banking Sector: Evidence from Two-Stage DEA Double Frontiers Analysis," IJFS, MDPI, vol. 11(1), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    2. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    3. Chiang Kao & Shiang-Tai Liu, 2022. "Stochastic efficiencies of network production systems with correlated stochastic data: the case of Taiwanese commercial banks," Annals of Operations Research, Springer, vol. 315(2), pages 1151-1174, August.
    4. Kanematsu, Simon Y. & Carvalho, Ney P. & Martinhon, Carlos A. & Almeida, Mariana R., 2020. "Ranking using η-efficiency and relative size measures based on DEA," Omega, Elsevier, vol. 90(C).
    5. Tan, Yong & Anchor, John, 2017. "The impacts of risk-taking behaviour and competition on technical efficiency: Evidence from the Chinese banking industry," Research in International Business and Finance, Elsevier, vol. 41(C), pages 90-104.
    6. Sailesh Tanna & Fotios Pasiouras & Matthias Nnadi, 2011. "The Effect of Board Size and Composition on the Efficiency of UK Banks," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 18(3), pages 441-462, November.
    7. Mohammad Shahid Zaman & Anup Kumar Bhandari, 2020. "Financial deregulation, competition and cost efficiency of Indian commercial banks: is there any convergence?," Indian Economic Review, Springer, vol. 55(2), pages 283-312, December.
    8. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    9. Salim, Ruhul & Arjomandi, Amir & Seufert, Juergen Heinz, 2016. "Does corporate governance affect Australian banks' performance?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 113-125.
    10. Zaman, Mohammad Shahid & Valiyattoor, Vipin & Bhandari, Anup Kumar, 2022. "Dynamics of total factor productivity growth: An empirical analysis of Indian commercial banks," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    11. Fukuyama, Hirofumi & Matousek, Roman, 2017. "Modelling bank performance: A network DEA approach," European Journal of Operational Research, Elsevier, vol. 259(2), pages 721-732.
    12. Marianela Carrillo & Jesús M. Jorge, 2017. "DEA-Like Efficiency Ranking of Regional Health Systems in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(3), pages 1133-1149, September.
    13. Silva, Thiago Christiano & Tabak, Benjamin Miranda & Cajueiro, Daniel Oliveira & Dias, Marina Villas Boas, 2018. "Adequacy of deterministic and parametric frontiers to analyze the efficiency of Indian commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1016-1025.
    14. Yang, Chyan & Liu, Hsian-Ming, 2012. "Managerial efficiency in Taiwan bank branches: A network DEA," Economic Modelling, Elsevier, vol. 29(2), pages 450-461.
    15. Yong Tan & Peter Wanke & Jorge Antunes & Ali Emrouznejad, 2021. "Unveiling endogeneity between competition and efficiency in Chinese banks: a two-stage network DEA and regression analysis," Annals of Operations Research, Springer, vol. 306(1), pages 131-171, November.
    16. Konara, Palitha & Tan, Yong & Johnes, Jill, 2019. "FDI and heterogeneity in bank efficiency: Evidence from emerging markets," Research in International Business and Finance, Elsevier, vol. 49(C), pages 100-113.
    17. Daraio, Cinzia & Kerstens, Kristiaan & Nepomuceno, Thyago & Sickles, Robin C., 2019. "Empirical Surveys of Frontier Applications: A Meta-Review," Working Papers 19-005, Rice University, Department of Economics.
    18. Adriana Cobas & Alexandros Maziotis & Andrés Villegas, 2023. "Measurement of Efficiency and its Drivers in the Chilean Banking Industry," Working Papers Central Bank of Chile 987, Central Bank of Chile.
    19. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    20. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03759-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.