IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v206y2010i3p623-633.html
   My bibliography  Save this article

Throughput optimization in robotic cells with input and output machine buffers: A comparative study of two key models

Author

Listed:
  • Drobouchevitch, Inna G.
  • Neil Geismar, H.
  • Sriskandarajah, Chelliah

Abstract

We consider the problem of scheduling operations in a robotic cell processing a single part type. Each machine in the cell has a one-unit input buffer and a one-unit output buffer. The machines and buffers are served by one single gripper robot. The domain considered is free-pickup cells with additive inter-machine travel time. The processing constraints specify the cell to be a flow shop. The objective is to find a cyclic sequence of robot moves that minimizes the long-run average time to produce a part or, equivalently, maximizes throughput. Bufferless robotic cells have been studied extensively in the literature. However, the few studies of robotic cells with output buffers at each machine have shown that the throughput can be improved by such a configuration. We show that there is no throughput advantage in providing machine input buffers in addition to output buffers. The equivalence in throughput between the two models has significant practical implications, since the cost of providing additional buffers at each machine is substantial.

Suggested Citation

  • Drobouchevitch, Inna G. & Neil Geismar, H. & Sriskandarajah, Chelliah, 2010. "Throughput optimization in robotic cells with input and output machine buffers: A comparative study of two key models," European Journal of Operational Research, Elsevier, vol. 206(3), pages 623-633, November.
  • Handle: RePEc:eee:ejores:v:206:y:2010:i:3:p:623-633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00169-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hichem Kamoun & Nicholas G. Hall & Chelliah Sriskandarajah, 1999. "Scheduling in Robotic Cells: Heuristics and Cell Design," Operations Research, INFORMS, vol. 47(6), pages 821-835, December.
    2. Chelliah Sriskandarajah & Inna Drobouchevitch & Suresh P. Sethi & Ramaswamy Chandrasekaran, 2004. "Scheduling Multiple Parts in a Robotic Cell Served by a Dual-Gripper Robot," Operations Research, INFORMS, vol. 52(1), pages 65-82, February.
    3. Milind W. Dawande & H. Neil Geismar & Suresh P. Sethi & Chelliah Sriskandarajah, 2007. "Throughput Optimization in Robotic Cells," International Series in Operations Research and Management Science, Springer, number 978-0-387-70988-8, December.
    4. Hall, Nicholas G. & Kamoun, Hichem & Sriskandarajah, Chelliah, 1998. "Scheduling in robotic cells: Complexity and steady state analysis," European Journal of Operational Research, Elsevier, vol. 109(1), pages 43-65, August.
    5. Drobouchevitch, Inna G. & Sethi, Suresh P. & Sriskandarajah, Chelliah, 2006. "Scheduling dual gripper robotic cell: One-unit cycles," European Journal of Operational Research, Elsevier, vol. 171(2), pages 598-631, June.
    6. Nicholas G. Hall & Hichem Kamoun & Chelliah Sriskandarajah, 1997. "Scheduling in Robotic Cells: Classification, Two and Three Machine Cells," Operations Research, INFORMS, vol. 45(3), pages 421-439, June.
    7. Chelliah Sriskandarajah & Nicholas Hall & Hichem Kamoun, 1998. "Scheduling large robotic cells without buffers," Annals of Operations Research, Springer, vol. 76(0), pages 287-321, January.
    8. Y. Crama & V. Kats & J. van de Klundert & E. Levner, 2000. "Cyclic scheduling in robotic flowshops," Annals of Operations Research, Springer, vol. 96(1), pages 97-124, November.
    9. Che, Ada & Chu, Chengbin & Levner, Eugene, 2003. "A polynomial algorithm for 2-degree cyclic robot scheduling," European Journal of Operational Research, Elsevier, vol. 145(1), pages 31-44, February.
    10. Agnetis, A., 2000. "Scheduling no-wait robotic cells with two and three machines," European Journal of Operational Research, Elsevier, vol. 123(2), pages 303-314, June.
    11. Levner, Eugene & Kats, Vladimir & Levit, Vadim E., 1997. "An improved algorithm for cyclic flowshop scheduling in a robotic cell," European Journal of Operational Research, Elsevier, vol. 97(3), pages 500-508, March.
    12. Milind Dawande & H. Geismar & Michael Pinedo & Chelliah Sriskandarajah, 2010. "Throughput optimization in dual-gripper interval robotic cells," IISE Transactions, Taylor & Francis Journals, vol. 42(1), pages 1-15.
    13. Yves Crama & Joris van de Klundert, 1997. "Cyclic Scheduling of Identical Parts in a Robotic Cell," Operations Research, INFORMS, vol. 45(6), pages 952-965, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yige & Chung, Sai-Ho & Wen, Xin & Ma, Hoi-Lam, 2021. "Novel robotic job-shop scheduling models with deadlock and robot movement considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milind Dawande & Michael Pinedo & Chelliah Sriskandarajah, 2009. "Multiple Part-Type Production in Robotic Cells: Equivalence of Two Real-World Models," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 210-228, February.
    2. Drobouchevitch, Inna G. & Sethi, Suresh P. & Sriskandarajah, Chelliah, 2006. "Scheduling dual gripper robotic cell: One-unit cycles," European Journal of Operational Research, Elsevier, vol. 171(2), pages 598-631, June.
    3. Chelliah Sriskandarajah & Inna Drobouchevitch & Suresh P. Sethi & Ramaswamy Chandrasekaran, 2004. "Scheduling Multiple Parts in a Robotic Cell Served by a Dual-Gripper Robot," Operations Research, INFORMS, vol. 52(1), pages 65-82, February.
    4. Neil Geismar, H. & Dawande, Milind & Sriskandarajah, Chelliah, 2005. "Approximation algorithms for k-unit cyclic solutions in robotic cells," European Journal of Operational Research, Elsevier, vol. 162(2), pages 291-309, April.
    5. W Zahrouni & H Kamoun, 2011. "Transforming part-sequencing problems in a robotic cell into a GTSP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 114-123, January.
    6. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    7. Che, Ada & Chu, Chengbin, 2009. "Multi-degree cyclic scheduling of a no-wait robotic cell with multiple robots," European Journal of Operational Research, Elsevier, vol. 199(1), pages 77-88, November.
    8. Gultekin, Hakan & Akturk, M. Selim & Karasan, Oya Ekin, 2006. "Cyclic scheduling of a 2-machine robotic cell with tooling constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 777-796, October.
    9. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    10. Milind Dawande & Chelliah Sriskandarajah & Suresh Sethi, 2002. "On Throughput Maximization in Constant Travel-Time Robotic Cells," Manufacturing & Service Operations Management, INFORMS, vol. 4(4), pages 296-312, August.
    11. Tharanga Rajapakshe & Milind Dawande & Chelliah Sriskandarajah, 2011. "Quantifying the Impact of Layout on Productivity: An Analysis from Robotic-Cell Manufacturing," Operations Research, INFORMS, vol. 59(2), pages 440-454, April.
    12. Xin Li & Richard Y. K. Fung, 2016. "Optimal K-unit cycle scheduling of two-cluster tools with residency constraints and general robot moving times," Journal of Scheduling, Springer, vol. 19(2), pages 165-176, April.
    13. Hichem Kamoun & Nicholas G. Hall & Chelliah Sriskandarajah, 1999. "Scheduling in Robotic Cells: Heuristics and Cell Design," Operations Research, INFORMS, vol. 47(6), pages 821-835, December.
    14. Janny M. Y. Leung & Guoqing Zhang & Xiaoguang Yang & Raymond Mak & Kokin Lam, 2004. "Optimal Cyclic Multi-Hoist Scheduling: A Mixed Integer Programming Approach," Operations Research, INFORMS, vol. 52(6), pages 965-976, December.
    15. Che, Ada & Chabrol, Michelle & Gourgand, Michel & Wang, Yuan, 2012. "Scheduling multiple robots in a no-wait re-entrant robotic flowshop," International Journal of Production Economics, Elsevier, vol. 135(1), pages 199-208.
    16. Jiyin Liu & Yun Jiang, 2005. "An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem," Operations Research, INFORMS, vol. 53(2), pages 313-327, April.
    17. Kats, Vladimir & Levner, Eugene, 2018. "On the existence of dominating 6-cyclic schedules in four-machine robotic cells," European Journal of Operational Research, Elsevier, vol. 268(2), pages 755-759.
    18. Ada Che & Vladimir Kats & Eugene Levner, 2011. "Cyclic scheduling in robotic flowshops with bounded work‐in‐process levels," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 1-16, February.
    19. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    20. Mohammad Reza Komari Alaei & Mehmet Soysal & Atabak Elmi & Audrius Banaitis & Nerija Banaitiene & Reza Rostamzadeh & Shima Javanmard, 2021. "A Bender’s Algorithm of Decomposition Used for the Parallel Machine Problem of Robotic Cell," Mathematics, MDPI, vol. 9(15), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:206:y:2010:i:3:p:623-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.