IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v45y1997i3p421-439.html
   My bibliography  Save this article

Scheduling in Robotic Cells: Classification, Two and Three Machine Cells

Author

Listed:
  • Nicholas G. Hall

    (The Ohio State University, Columbus, Ohio)

  • Hichem Kamoun

    (Faculté des Sciences Economiques et de Gestion de Sfax, Tunisia)

  • Chelliah Sriskandarajah

    (University of Toronto, Ontario, Canada)

Abstract

This paper considers the scheduling of operations in a manufacturing cell that repetitively produces a family of similar parts on two or three machines served by a robot. We provide a classification scheme for scheduling problems in robotic cells. We discuss finding the robot move cycle and the part sequence that jointly minimize the production cycle time, or equivalently maximize the throughput rate. For multiple part-type problems in a two-machine cell, we provide an efficient algorithm that simultaneously optimizes the robot move and part sequencing problems. This algorithm is tested computationally. For a three-machine cell with general data and identical parts, we address an important conjecture about the optimality of repeating one-unit cycles, and show that such a procedure dominates more complicated cycles producing two units. For a three-machine cell producing multiple part-types, we prove that four out of the six potentially optimal robot move cycles for producing one unit allow efficient identification of the optimal part sequence. Several efficiently solvable special cases with practical relevance are identified, since the general problem of minimizing cycle time is intractable. Finally, we discuss ways in which a robotic cell converges to a steady state.

Suggested Citation

  • Nicholas G. Hall & Hichem Kamoun & Chelliah Sriskandarajah, 1997. "Scheduling in Robotic Cells: Classification, Two and Three Machine Cells," Operations Research, INFORMS, vol. 45(3), pages 421-439, June.
  • Handle: RePEc:inm:oropre:v:45:y:1997:i:3:p:421-439
    DOI: 10.1287/opre.45.3.421
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.45.3.421
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.45.3.421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hall, Nicholas G. & Kamoun, Hichem & Sriskandarajah, Chelliah, 1998. "Scheduling in robotic cells: Complexity and steady state analysis," European Journal of Operational Research, Elsevier, vol. 109(1), pages 43-65, August.
    2. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    3. Milind Dawande & Chelliah Sriskandarajah & Suresh Sethi, 2002. "On Throughput Maximization in Constant Travel-Time Robotic Cells," Manufacturing & Service Operations Management, INFORMS, vol. 4(4), pages 296-312, August.
    4. Vladimir G. Deineko & George Steiner & Zhihui Xue, 2005. "Robotic-Cell Scheduling: Special Polynomially Solvable Cases of the Traveling Salesman Problem on Permuted Monge Matrices," Journal of Combinatorial Optimization, Springer, vol. 9(4), pages 381-399, June.
    5. Neil Geismar, H. & Dawande, Milind & Sriskandarajah, Chelliah, 2005. "Approximation algorithms for k-unit cyclic solutions in robotic cells," European Journal of Operational Research, Elsevier, vol. 162(2), pages 291-309, April.
    6. W Zahrouni & H Kamoun, 2011. "Transforming part-sequencing problems in a robotic cell into a GTSP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 114-123, January.
    7. Drobouchevitch, Inna G. & Neil Geismar, H. & Sriskandarajah, Chelliah, 2010. "Throughput optimization in robotic cells with input and output machine buffers: A comparative study of two key models," European Journal of Operational Research, Elsevier, vol. 206(3), pages 623-633, November.
    8. Hichem Kamoun & Nicholas G. Hall & Chelliah Sriskandarajah, 1999. "Scheduling in Robotic Cells: Heuristics and Cell Design," Operations Research, INFORMS, vol. 47(6), pages 821-835, December.
    9. Chelliah Sriskandarajah & Inna Drobouchevitch & Suresh P. Sethi & Ramaswamy Chandrasekaran, 2004. "Scheduling Multiple Parts in a Robotic Cell Served by a Dual-Gripper Robot," Operations Research, INFORMS, vol. 52(1), pages 65-82, February.
    10. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    11. Gultekin, Hakan & Akturk, M. Selim & Karasan, Oya Ekin, 2006. "Cyclic scheduling of a 2-machine robotic cell with tooling constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 777-796, October.
    12. Milind Dawande & Michael Pinedo & Chelliah Sriskandarajah, 2009. "Multiple Part-Type Production in Robotic Cells: Equivalence of Two Real-World Models," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 210-228, February.
    13. Drobouchevitch, Inna G. & Sethi, Suresh P. & Sriskandarajah, Chelliah, 2006. "Scheduling dual gripper robotic cell: One-unit cycles," European Journal of Operational Research, Elsevier, vol. 171(2), pages 598-631, June.
    14. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    15. Zhi-Long Chen & Nicholas G. Hall, 2008. "Maximum Profit Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 84-107, February.
    16. Nicholas G. Hall & Marc E. Posner, 2007. "Performance Prediction and Preselection for Optimization and Heuristic Solution Procedures," Operations Research, INFORMS, vol. 55(4), pages 703-716, August.
    17. Batur, G. Didem & Karasan, Oya Ekin & Akturk, M. Selim, 2012. "Multiple part-type scheduling in flexible robotic cells," International Journal of Production Economics, Elsevier, vol. 135(2), pages 726-740.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:45:y:1997:i:3:p:421-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.