IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v199y2009i1p77-88.html
   My bibliography  Save this article

Multi-degree cyclic scheduling of a no-wait robotic cell with multiple robots

Author

Listed:
  • Che, Ada
  • Chu, Chengbin

Abstract

This paper addresses cyclic scheduling of a no-wait robotic cell with multiple robots. In contrast to many previous studies, we consider r-degree cyclic (r > 1) schedules, in which r identical parts with constant processing times enter and leave the cell in each cycle. We propose an algorithm to find the minimal number of robots for all feasible r-degree cycle times for a given r (r > 1). Consequently, the optimal r-degree cycle time for any given number of robots for this given r can be obtained with the algorithm. To develop the algorithm, we first show that if the entering times of r parts, relative to the start of a cycle, and the cycle time are fixed, minimizing the number of robots for the corresponding r-degree schedule can be transformed into an assignment problem. We then demonstrate that the cost matrix for the assignment problem changes only at some special values of the cycle time and the part entering times, and identify all special values for them. We solve our problem by enumerating all possible cost matrices for the assignment problem, which is subsequently accomplished by enumerating intervals for the cycle time and linear functions of the part entering times due to the identification of the special values. The algorithm developed is shown to be polynomial in the number of machines for a fixed r, but exponential if r is arbitrary.

Suggested Citation

  • Che, Ada & Chu, Chengbin, 2009. "Multi-degree cyclic scheduling of a no-wait robotic cell with multiple robots," European Journal of Operational Research, Elsevier, vol. 199(1), pages 77-88, November.
  • Handle: RePEc:eee:ejores:v:199:y:2009:i:1:p:77-88
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00972-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neil Geismar, H. & Dawande, Milind & Sriskandarajah, Chelliah, 2005. "Approximation algorithms for k-unit cyclic solutions in robotic cells," European Journal of Operational Research, Elsevier, vol. 162(2), pages 291-309, April.
    2. Y. Crama & V. Kats & J. van de Klundert & E. Levner, 2000. "Cyclic scheduling in robotic flowshops," Annals of Operations Research, Springer, vol. 96(1), pages 97-124, November.
    3. Janny M. Y. Leung & Guoqing Zhang & Xiaoguang Yang & Raymond Mak & Kokin Lam, 2004. "Optimal Cyclic Multi-Hoist Scheduling: A Mixed Integer Programming Approach," Operations Research, INFORMS, vol. 52(6), pages 965-976, December.
    4. Alcaide, David & Chu, Chengbin & Kats, Vladimir & Levner, Eugene & Sierksma, Gerard, 2007. "Cyclic multiple-robot scheduling with time-window constraints using a critical path approach," European Journal of Operational Research, Elsevier, vol. 177(1), pages 147-162, February.
    5. Alessandro Agnetis, 1997. "No-wait flow shop scheduling with large lot sizes," Annals of Operations Research, Springer, vol. 70(0), pages 415-438, April.
    6. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    7. Milind W. Dawande & H. Neil Geismar & Suresh P. Sethi & Chelliah Sriskandarajah, 2007. "Throughput Optimization in Robotic Cells," International Series in Operations Research and Management Science, Springer, number 978-0-387-70988-8, April.
    8. Agnetis, A., 2000. "Scheduling no-wait robotic cells with two and three machines," European Journal of Operational Research, Elsevier, vol. 123(2), pages 303-314, June.
    9. Vladimir Kats & Eugene Levner, 1997. "Minimizing the number of robots to meet a given cyclic schedule," Annals of Operations Research, Springer, vol. 69(0), pages 209-226, January.
    10. Drobouchevitch, Inna G. & Sethi, Suresh P. & Sriskandarajah, Chelliah, 2006. "Scheduling dual gripper robotic cell: One-unit cycles," European Journal of Operational Research, Elsevier, vol. 171(2), pages 598-631, June.
    11. Jiyin Liu & Yun Jiang, 2005. "An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem," Operations Research, INFORMS, vol. 53(2), pages 313-327, April.
    12. Levner, Eugene & Kats, Vladimir & Levit, Vadim E., 1997. "An improved algorithm for cyclic flowshop scheduling in a robotic cell," European Journal of Operational Research, Elsevier, vol. 97(3), pages 500-508, March.
    13. Yves Crama & Joris van de Klundert, 1997. "Cyclic Scheduling of Identical Parts in a Robotic Cell," Operations Research, INFORMS, vol. 45(6), pages 952-965, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.
    2. Kats, Vladimir & Levner, Eugene, 2011. "A faster algorithm for 2-cyclic robotic scheduling with a fixed robot route and interval processing times," European Journal of Operational Research, Elsevier, vol. 209(1), pages 51-56, February.
    3. Shabtay, Dvir & Arviv, Kfir & Stern, Helman & Edan, Yael, 2014. "A combined robot selection and scheduling problem for flow-shops with no-wait restrictions," Omega, Elsevier, vol. 43(C), pages 96-107.
    4. Fatemi-Anaraki, Soroush & Tavakkoli-Moghaddam, Reza & Foumani, Mehdi & Vahedi-Nouri, Behdin, 2023. "Scheduling of Multi-Robot Job Shop Systems in Dynamic Environments: Mixed-Integer Linear Programming and Constraint Programming Approaches," Omega, Elsevier, vol. 115(C).
    5. Kats, Vladimir & Levner, Eugene, 2018. "On the existence of dominating 6-cyclic schedules in four-machine robotic cells," European Journal of Operational Research, Elsevier, vol. 268(2), pages 755-759.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drobouchevitch, Inna G. & Neil Geismar, H. & Sriskandarajah, Chelliah, 2010. "Throughput optimization in robotic cells with input and output machine buffers: A comparative study of two key models," European Journal of Operational Research, Elsevier, vol. 206(3), pages 623-633, November.
    2. Che, Ada & Chabrol, Michelle & Gourgand, Michel & Wang, Yuan, 2012. "Scheduling multiple robots in a no-wait re-entrant robotic flowshop," International Journal of Production Economics, Elsevier, vol. 135(1), pages 199-208.
    3. Milind Dawande & Michael Pinedo & Chelliah Sriskandarajah, 2009. "Multiple Part-Type Production in Robotic Cells: Equivalence of Two Real-World Models," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 210-228, February.
    4. Xin Li & Richard Y. K. Fung, 2016. "Optimal K-unit cycle scheduling of two-cluster tools with residency constraints and general robot moving times," Journal of Scheduling, Springer, vol. 19(2), pages 165-176, April.
    5. Drobouchevitch, Inna G. & Sethi, Suresh P. & Sriskandarajah, Chelliah, 2006. "Scheduling dual gripper robotic cell: One-unit cycles," European Journal of Operational Research, Elsevier, vol. 171(2), pages 598-631, June.
    6. Chelliah Sriskandarajah & Inna Drobouchevitch & Suresh P. Sethi & Ramaswamy Chandrasekaran, 2004. "Scheduling Multiple Parts in a Robotic Cell Served by a Dual-Gripper Robot," Operations Research, INFORMS, vol. 52(1), pages 65-82, February.
    7. Ada Che & Vladimir Kats & Eugene Levner, 2011. "Cyclic scheduling in robotic flowshops with bounded work‐in‐process levels," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 1-16, February.
    8. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    9. Neil Geismar, H. & Dawande, Milind & Sriskandarajah, Chelliah, 2005. "Approximation algorithms for k-unit cyclic solutions in robotic cells," European Journal of Operational Research, Elsevier, vol. 162(2), pages 291-309, April.
    10. Tharanga Rajapakshe & Milind Dawande & Chelliah Sriskandarajah, 2011. "Quantifying the Impact of Layout on Productivity: An Analysis from Robotic-Cell Manufacturing," Operations Research, INFORMS, vol. 59(2), pages 440-454, April.
    11. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    12. Janny M. Y. Leung & Guoqing Zhang & Xiaoguang Yang & Raymond Mak & Kokin Lam, 2004. "Optimal Cyclic Multi-Hoist Scheduling: A Mixed Integer Programming Approach," Operations Research, INFORMS, vol. 52(6), pages 965-976, December.
    13. Shabtay, Dvir & Arviv, Kfir & Stern, Helman & Edan, Yael, 2014. "A combined robot selection and scheduling problem for flow-shops with no-wait restrictions," Omega, Elsevier, vol. 43(C), pages 96-107.
    14. Kats, Vladimir & Levner, Eugene, 2018. "On the existence of dominating 6-cyclic schedules in four-machine robotic cells," European Journal of Operational Research, Elsevier, vol. 268(2), pages 755-759.
    15. Paul, Henrik J. & Bierwirth, Christian & Kopfer, Herbert, 2007. "A heuristic scheduling procedure for multi-item hoist production lines," International Journal of Production Economics, Elsevier, vol. 105(1), pages 54-69, January.
    16. Hichem Kamoun & Nicholas G. Hall & Chelliah Sriskandarajah, 1999. "Scheduling in Robotic Cells: Heuristics and Cell Design," Operations Research, INFORMS, vol. 47(6), pages 821-835, December.
    17. W Zahrouni & H Kamoun, 2011. "Transforming part-sequencing problems in a robotic cell into a GTSP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 114-123, January.
    18. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    19. Gultekin, Hakan & Akturk, M. Selim & Karasan, Oya Ekin, 2006. "Cyclic scheduling of a 2-machine robotic cell with tooling constraints," European Journal of Operational Research, Elsevier, vol. 174(2), pages 777-796, October.
    20. Milind Dawande & Zhichao Feng & Ganesh Janakiraman, 2021. "On the Structure of Bottlenecks in Processes," Management Science, INFORMS, vol. 67(6), pages 3853-3870, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:199:y:2009:i:1:p:77-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.