IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v58y2011i1p1-16.html
   My bibliography  Save this article

Cyclic scheduling in robotic flowshops with bounded work‐in‐process levels

Author

Listed:
  • Ada Che
  • Vladimir Kats
  • Eugene Levner

Abstract

This study addresses cyclic scheduling in robotic flowshops with bounded work‐in‐process (WIP) levels. The objective is to minimize the cycle time or, equivalently, to maximize the throughput, under the condition that the WIP level is bounded from above by a given integer number. We present several strongly polynomial algorithms for the 2‐cyclic robotic flowshop scheduling problems for various WIP levels. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 58: 1–16, 2011

Suggested Citation

  • Ada Che & Vladimir Kats & Eugene Levner, 2011. "Cyclic scheduling in robotic flowshops with bounded work‐in‐process levels," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 1-16, February.
  • Handle: RePEc:wly:navres:v:58:y:2011:i:1:p:1-16
    DOI: 10.1002/nav.20435
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20435
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tae-Eog Lee & Marc E. Posner, 1997. "Performance Measures and Schedules in Periodic Job Shops," Operations Research, INFORMS, vol. 45(1), pages 72-91, February.
    2. Lee, Jong-Kun & Korbaa, Ouajdi, 2006. "Scheduling analysis of FMS: An unfolding timed Petri nets approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(5), pages 419-432.
    3. Milind W. Dawande & H. Neil Geismar & Suresh P. Sethi & Chelliah Sriskandarajah, 2007. "Throughput Optimization in Robotic Cells," International Series in Operations Research and Management Science, Springer, number 978-0-387-70988-8, January.
    4. Selcuk Karabati & Panagiotis Kouvelis, 1996. "Cyclic scheduling in flow lines: Modeling observations, effective heuristics and a cycle time minimization procedure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 211-231, March.
    5. Brauner, Nadia & Finke, Gerd, 2001. "Optimal moves of the material handling system in a robotic cell," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 269-277, December.
    6. Neil Geismar, H. & Dawande, Milind & Sriskandarajah, Chelliah, 2005. "Approximation algorithms for k-unit cyclic solutions in robotic cells," European Journal of Operational Research, Elsevier, vol. 162(2), pages 291-309, April.
    7. Y. Crama & V. Kats & J. van de Klundert & E. Levner, 2000. "Cyclic scheduling in robotic flowshops," Annals of Operations Research, Springer, vol. 96(1), pages 97-124, November.
    8. Agnetis, A. & Pacifici, A. & Rossi, F. & Lucertini, M. & Nicoletti, S. & Nicolo, F. & Oriolo, G. & Pacciarelli, D. & Pesaro, E., 1997. "Scheduling of flexible flow lines in an automobile assembly plant," European Journal of Operational Research, Elsevier, vol. 97(2), pages 348-362, March.
    9. Levner, Eugene & Kats, Vladimir & Levit, Vadim E., 1997. "An improved algorithm for cyclic flowshop scheduling in a robotic cell," European Journal of Operational Research, Elsevier, vol. 97(3), pages 500-508, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Che, Ada & Chu, Chengbin, 2009. "Multi-degree cyclic scheduling of a no-wait robotic cell with multiple robots," European Journal of Operational Research, Elsevier, vol. 199(1), pages 77-88, November.
    2. Drobouchevitch, Inna G. & Neil Geismar, H. & Sriskandarajah, Chelliah, 2010. "Throughput optimization in robotic cells with input and output machine buffers: A comparative study of two key models," European Journal of Operational Research, Elsevier, vol. 206(3), pages 623-633, November.
    3. Che, Ada & Chabrol, Michelle & Gourgand, Michel & Wang, Yuan, 2012. "Scheduling multiple robots in a no-wait re-entrant robotic flowshop," International Journal of Production Economics, Elsevier, vol. 135(1), pages 199-208.
    4. Hyun-Jung Kim & Jun-Ho Lee, 2021. "Cyclic robot scheduling for 3D printer-based flexible assembly systems," Annals of Operations Research, Springer, vol. 298(1), pages 339-359, March.
    5. Xin Li & Richard Y. K. Fung, 2016. "Optimal K-unit cycle scheduling of two-cluster tools with residency constraints and general robot moving times," Journal of Scheduling, Springer, vol. 19(2), pages 165-176, April.
    6. Kats, Vladimir & Lei, Lei & Levner, Eugene, 2008. "Minimizing the cycle time of multiple-product processing networks with a fixed operation sequence, setups, and time-window constraints," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1196-1211, June.
    7. Feng, Jianguang & Che, Ada & Chu, Chengbin & Levner, Eugene & Kats, Vladimir, 2024. "Scheduling robotic cells with fixed processing times or time windows: Classification, solution approaches, polynomial algorithms and complexity," European Journal of Operational Research, Elsevier, vol. 319(2), pages 468-483.
    8. Drobouchevitch, Inna G. & Sethi, Suresh P. & Sriskandarajah, Chelliah, 2006. "Scheduling dual gripper robotic cell: One-unit cycles," European Journal of Operational Research, Elsevier, vol. 171(2), pages 598-631, June.
    9. Tharanga Rajapakshe & Milind Dawande & Chelliah Sriskandarajah, 2011. "Quantifying the Impact of Layout on Productivity: An Analysis from Robotic-Cell Manufacturing," Operations Research, INFORMS, vol. 59(2), pages 440-454, April.
    10. Kats, Vladimir & Levner, Eugene, 2018. "On the existence of dominating 6-cyclic schedules in four-machine robotic cells," European Journal of Operational Research, Elsevier, vol. 268(2), pages 755-759.
    11. Chelliah Sriskandarajah & Inna Drobouchevitch & Suresh P. Sethi & Ramaswamy Chandrasekaran, 2004. "Scheduling Multiple Parts in a Robotic Cell Served by a Dual-Gripper Robot," Operations Research, INFORMS, vol. 52(1), pages 65-82, February.
    12. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    13. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    14. Janny M. Y. Leung & Guoqing Zhang & Xiaoguang Yang & Raymond Mak & Kokin Lam, 2004. "Optimal Cyclic Multi-Hoist Scheduling: A Mixed Integer Programming Approach," Operations Research, INFORMS, vol. 52(6), pages 965-976, December.
    15. Milind Dawande & Michael Pinedo & Chelliah Sriskandarajah, 2009. "Multiple Part-Type Production in Robotic Cells: Equivalence of Two Real-World Models," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 210-228, February.
    16. Neil Geismar, H. & Dawande, Milind & Sriskandarajah, Chelliah, 2005. "Approximation algorithms for k-unit cyclic solutions in robotic cells," European Journal of Operational Research, Elsevier, vol. 162(2), pages 291-309, April.
    17. Weng, Wei & Fujimura, Shigeru, 2012. "Control methods for dynamic time-based manufacturing under customized product lead times," European Journal of Operational Research, Elsevier, vol. 218(1), pages 86-96.
    18. Taube, F. & Minner, S., 2018. "Resequencing mixed-model assembly lines with restoration to customer orders," Omega, Elsevier, vol. 78(C), pages 99-111.
    19. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2022. "Evaluation of VaR and CVaR for the makespan in interval valued blocking job shops," International Journal of Production Economics, Elsevier, vol. 247(C).
    20. Paul, Henrik J. & Bierwirth, Christian & Kopfer, Herbert, 2007. "A heuristic scheduling procedure for multi-item hoist production lines," International Journal of Production Economics, Elsevier, vol. 105(1), pages 54-69, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:58:y:2011:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.