IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v197y2009i2p685-692.html
   My bibliography  Save this article

g-dominance: Reference point based dominance for multiobjective metaheuristics

Author

Listed:
  • Molina, Julin
  • Santana, Luis V.
  • Hernandez-Daz, Alfredo G.
  • Coello Coello, Carlos A.
  • Caballero, Rafael

Abstract

One of the main tools for including decision maker (DM) preferences in the multiobjective optimization (MO) literature is the use of reference points and achievement scalarizing functions [A.P. Wierzbicki, The use of reference objectives in multiobjective optimization, in: G. Fandel, T. Gal (Eds.), Multiple-Criteria Decision Making Theory and Application, Springer-Verlag, New York, 1980, pp. 469-486.]. The core idea in these approaches is converting the original MO problem into a single-objective optimization problem through the use of a scalarizing function based on a reference point. As a result, a single efficient point adapted to the DM's preferences is obtained. However, a single solution can be less interesting than an approximation of the efficient set around this area, as stated for example by Deb in [K. Deb, J. Sundar, N. Udaya Bhaskara Rao, S. Chaudhuri, Reference point based multiobjective optimization using evolutionary algorithms, International Journal of Computational Intelligence Research, 2(3) (2006) 273-286]. In this paper, we propose a variation of the concept of Pareto dominance, called g-dominance, which is based on the information included in a reference point and designed to be used with any MO evolutionary method or any MO metaheuristic. This concept will let us approximate the efficient set around the area of the most preferred point without using any scalarizing function. On the other hand, we will show how it can be easily used with any MO evolutionary method or any MO metaheuristic (just changing the dominance concept) and, to exemplify its use, we will show some results with some state-of-the-art-methods and some test problems.

Suggested Citation

  • Molina, Julin & Santana, Luis V. & Hernandez-Daz, Alfredo G. & Coello Coello, Carlos A. & Caballero, Rafael, 2009. "g-dominance: Reference point based dominance for multiobjective metaheuristics," European Journal of Operational Research, Elsevier, vol. 197(2), pages 685-692, September.
  • Handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:685-692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00514-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miettinen, Kaisa & Makela, Marko M., 2006. "Synchronous approach in interactive multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 170(3), pages 909-922, May.
    2. Selcen (Pamuk) Phelps & Murat Köksalan, 2003. "An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization," Management Science, INFORMS, vol. 49(12), pages 1726-1738, December.
    3. Hapke, Maciej & Jaszkiewicz, Andrzej & Slowinski, Roman, 1998. "Interactive analysis of multiple-criteria project scheduling problems," European Journal of Operational Research, Elsevier, vol. 107(2), pages 315-324, June.
    4. Pekka Korhonen & Jyrki Wallenius, 1988. "A pareto race," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 615-623, December.
    5. K Deb, 2001. "Nonlinear goal programming using multi-objective genetic algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 291-302, March.
    6. Jaszkiewicz, Andrzej & Slowinski, Roman, 1999. "The `Light Beam Search' approach - an overview of methodology and applications," European Journal of Operational Research, Elsevier, vol. 113(2), pages 300-314, March.
    7. Korhonen, Pekka J. & Laakso, Jukka, 1986. "A visual interactive method for solving the multiple criteria problem," European Journal of Operational Research, Elsevier, vol. 24(2), pages 277-287, February.
    8. Jones, D. F. & Mirrazavi, S. K. & Tamiz, M., 2002. "Multi-objective meta-heuristics: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 137(1), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rong Tang & Ke Li & Wei Ding & Yuntao Wang & Huicheng Zhou & Guangtao Fu, 2020. "Reference Point Based Multi-Objective Optimization of Reservoir Operation: a Comparison of Three Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1005-1020, February.
    2. Zio, E. & Bazzo, R., 2011. "Level Diagrams analysis of Pareto Front for multiobjective system redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 569-580.
    3. Angelo Aliano Filho & Antonio Carlos Moretti & Margarida Vaz Pato & Washington Alves Oliveira, 2021. "An exact scalarization method with multiple reference points for bi-objective integer linear optimization problems," Annals of Operations Research, Springer, vol. 296(1), pages 35-69, January.
    4. Carolina Almeida & Richard Gonçalves & Elizabeth Goldbarg & Marco Goldbarg & Myriam Delgado, 2012. "An experimental analysis of evolutionary heuristics for the biobjective traveling purchaser problem," Annals of Operations Research, Springer, vol. 199(1), pages 305-341, October.
    5. Figueira, J.R. & Liefooghe, A. & Talbi, E.-G. & Wierzbicki, A.P., 2010. "A parallel multiple reference point approach for multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 205(2), pages 390-400, September.
    6. Ana Ruiz & Rubén Saborido & Mariano Luque, 2015. "A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm," Journal of Global Optimization, Springer, vol. 62(1), pages 101-129, May.
    7. Wang, Rui & Purshouse, Robin C. & Giagkiozis, Ioannis & Fleming, Peter J., 2015. "The iPICEA-g: a new hybrid evolutionary multi-criteria decision making approach using the brushing technique," European Journal of Operational Research, Elsevier, vol. 243(2), pages 442-453.
    8. Liefooghe, Arnaud & Jourdan, Laetitia & Talbi, El-Ghazali, 2011. "A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO," European Journal of Operational Research, Elsevier, vol. 209(2), pages 104-112, March.
    9. Fowler, John W. & Gel, Esma S. & Köksalan, Murat M. & Korhonen, Pekka & Marquis, Jon L. & Wallenius, Jyrki, 2010. "Interactive evolutionary multi-objective optimization for quasi-concave preference functions," European Journal of Operational Research, Elsevier, vol. 206(2), pages 417-425, October.
    10. Mohamed Abouhawwash & Kalyanmoy Deb, 2021. "Reference point based evolutionary multi-objective optimization algorithms with convergence properties using KKTPM and ASF metrics," Journal of Heuristics, Springer, vol. 27(4), pages 575-614, August.
    11. Ricardo Landa & Giomara Lárraga & Gregorio Toscano, 2019. "Use of a goal-constraint-based approach for finding the region of interest in multi-objective problems," Journal of Heuristics, Springer, vol. 25(1), pages 107-139, February.
    12. Zio, E. & Bazzo, R., 2011. "A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 210(3), pages 624-634, May.
    13. Ana B. Ruiz & Rubén Saborido & José D. Bermúdez & Mariano Luque & Enriqueta Vercher, 2020. "Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences," Journal of Global Optimization, Springer, vol. 76(2), pages 295-315, February.
    14. He, Li-Jun & Ju, Xue-Wei & Zhang, Wei-Bo, 2018. "A fitness assignment strategy based on the grey and entropy parallel analysis and its application to MOEAAuthor-Name: Zhu, Guang-Yu," European Journal of Operational Research, Elsevier, vol. 265(3), pages 813-828.
    15. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    16. Rodríguez, Beatriz & Molina, Julián & Pérez, Fátima & Caballero, Rafael, 2012. "Interactive design of personalised tourism routes," Tourism Management, Elsevier, vol. 33(4), pages 926-940.
    17. E. Filatovas & O. Kurasova & J. L. Redondo & J. Fernández, 2020. "A reference point-based evolutionary algorithm for approximating regions of interest in multiobjective problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 402-423, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luque, M. & Marcenaro-Gutiérrez, O.D. & López-Agudo, L.A., 2015. "On the potential balance among compulsory education outcomes through econometric and multiobjective programming analysis," European Journal of Operational Research, Elsevier, vol. 241(2), pages 527-540.
    2. Kaliszewski, Ignacy & Miroforidis, Janusz & Podkopaev, Dmitry, 2012. "Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy," European Journal of Operational Research, Elsevier, vol. 216(1), pages 188-199.
    3. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    4. Arbel, Ami & Korhonen, Pekka, 2001. "Using objective values to start multiple objective linear programming algorithms," European Journal of Operational Research, Elsevier, vol. 128(3), pages 587-596, February.
    5. Ruiz, Francisco & Luque, Mariano & Miguel, Francisca & del Mar Munoz, Maria, 2008. "An additive achievement scalarizing function for multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 188(3), pages 683-694, August.
    6. Kathrin Klamroth & Kaisa Miettinen, 2008. "Integrating Approximation and Interactive Decision Making in Multicriteria Optimization," Operations Research, INFORMS, vol. 56(1), pages 222-234, February.
    7. Luque, Mariano & Miettinen, Kaisa & Eskelinen, Petri & Ruiz, Francisco, 2009. "Incorporating preference information in interactive reference point methods for multiobjective optimization," Omega, Elsevier, vol. 37(2), pages 450-462, April.
    8. Karaivanova, Jasmina & Korhonen, Pekka & Narula, Subhash & Wallenius, Jyrki & Vassilev, Vassil, 1995. "A reference direction approach to multiple objective integer linear programming," European Journal of Operational Research, Elsevier, vol. 81(1), pages 176-187, February.
    9. M Köksalan & E Karasakal, 2006. "An interactive approach for multiobjective decision making," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 532-540, May.
    10. Matthias Ehrgott & Xavier Gandibleux, 2004. "Approximative solution methods for multiobjective combinatorial optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-63, June.
    11. P. Korhonen & A. Siljamaeki & M. Soismaa, 1998. "Practical Aspects of Value Efficiency Analysis," Working Papers ir98042, International Institute for Applied Systems Analysis.
    12. Miettinen, Kaisa & Molina, Julián & González, Mercedes & Hernández-Díaz, Alfredo & Caballero, Rafael, 2009. "Using box indices in supporting comparison in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 197(1), pages 17-24, August.
    13. Ana Ruiz & Rubén Saborido & Mariano Luque, 2015. "A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm," Journal of Global Optimization, Springer, vol. 62(1), pages 101-129, May.
    14. Murat Köksalan & Robert D. Plante, 2003. "Interactive Multicriteria Optimization for Multiple-Response Product and Process Design," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 334-347, May.
    15. Wang, Rui & Purshouse, Robin C. & Giagkiozis, Ioannis & Fleming, Peter J., 2015. "The iPICEA-g: a new hybrid evolutionary multi-criteria decision making approach using the brushing technique," European Journal of Operational Research, Elsevier, vol. 243(2), pages 442-453.
    16. T. Joro, 1998. "Models for Identifying Target Units in Data Envelopment Analysis: Comparison and Extension," Working Papers ir98055, International Institute for Applied Systems Analysis.
    17. Tarja Joro & Pekka Korhonen & Jyrki Wallenius, 1998. "Structural Comparison of Data Envelopment Analysis and Multiple Objective Linear Programming," Management Science, INFORMS, vol. 44(7), pages 962-970, July.
    18. P. Korhonen, 1997. "Searching the Efficient Frontier in Data Envelopment Analysis," Working Papers ir97079, International Institute for Applied Systems Analysis.
    19. Pekka Korhonen & Guang Yuan Yu, 2000. "Quadratic Pareto Race," World Scientific Book Chapters, in: Yong Shi & Milan Zeleny (ed.), New Frontiers Of Decision Making For The Information Technology Era, chapter 7, pages 123-142, World Scientific Publishing Co. Pte. Ltd..
    20. Korhonen, Pekka J. & Wallenius, Jyrki & Genc, Tolga & Xu, Peng, 2021. "On rational behavior in multi-attribute riskless choice," European Journal of Operational Research, Elsevier, vol. 288(1), pages 331-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:685-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.