IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v205y2010i2p390-400.html
   My bibliography  Save this article

A parallel multiple reference point approach for multi-objective optimization

Author

Listed:
  • Figueira, J.R.
  • Liefooghe, A.
  • Talbi, E.-G.
  • Wierzbicki, A.P.

Abstract

This paper presents a multiple reference point approach for multi-objective optimization problems of discrete and combinatorial nature. When approximating the Pareto Frontier, multiple reference points can be used instead of traditional techniques. These multiple reference points can easily be implemented in a parallel algorithmic framework. The reference points can be uniformly distributed within a region that covers the Pareto Frontier. An evolutionary algorithm is based on an achievement scalarizing function that does not impose any restrictions with respect to the location of the reference points in the objective space. Computational experiments are performed on a bi-objective flow-shop scheduling problem. Results, quality measures as well as a statistical analysis are reported in the paper.

Suggested Citation

  • Figueira, J.R. & Liefooghe, A. & Talbi, E.-G. & Wierzbicki, A.P., 2010. "A parallel multiple reference point approach for multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 205(2), pages 390-400, September.
  • Handle: RePEc:eee:ejores:v:205:y:2010:i:2:p:390-400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00008-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Yeong-Dae, 1995. "Minimizing total tardiness in permutation flowshops," European Journal of Operational Research, Elsevier, vol. 85(3), pages 541-555, September.
    2. Luque, Mariano & Miettinen, Kaisa & Eskelinen, Petri & Ruiz, Francisco, 2009. "Incorporating preference information in interactive reference point methods for multiobjective optimization," Omega, Elsevier, vol. 37(2), pages 450-462, April.
    3. F Ruiz & M Luque & J M Cabello, 2009. "A classification of the weighting schemes in reference point procedures for multiobjective programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 544-553, April.
    4. Molina, Julin & Santana, Luis V. & Hernandez-Daz, Alfredo G. & Coello Coello, Carlos A. & Caballero, Rafael, 2009. "g-dominance: Reference point based dominance for multiobjective metaheuristics," European Journal of Operational Research, Elsevier, vol. 197(2), pages 685-692, September.
    5. Nagar, Amit & Haddock, Jorge & Heragu, Sunderesh, 1995. "Multiple and bicriteria scheduling: A literature survey," European Journal of Operational Research, Elsevier, vol. 81(1), pages 88-104, February.
    6. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    7. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taher Ahmadi & Bo van der Rhee, 2023. "Multiobjective Line Balancing Game: Collaboration and Peer Evaluation," INFORMS Transactions on Education, INFORMS, vol. 23(3), pages 179-195, May.
    2. Yannik Zeiträg & José Rui Figueira, 2023. "Automatically evolving preference-based dispatching rules for multi-objective job shop scheduling," Journal of Scheduling, Springer, vol. 26(3), pages 289-314, June.
    3. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    4. Steuer, Ralph E. & Utz, Sebastian, 2023. "Non-contour efficient fronts for identifying most preferred portfolios in sustainability investing," European Journal of Operational Research, Elsevier, vol. 306(2), pages 742-753.
    5. Pinto, F.S. & Figueira, J.R. & Marques, R.C., 2015. "A multi-objective approach with soft constraints for water supply and wastewater coverage improvements," European Journal of Operational Research, Elsevier, vol. 246(2), pages 609-618.
    6. Ana Ruiz & Rubén Saborido & Mariano Luque, 2015. "A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm," Journal of Global Optimization, Springer, vol. 62(1), pages 101-129, May.
    7. Liefooghe, Arnaud & Jourdan, Laetitia & Talbi, El-Ghazali, 2011. "A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO," European Journal of Operational Research, Elsevier, vol. 209(2), pages 104-112, March.
    8. Theodor J. Stewart, 2016. "Multiple objective project portfolio selection based on reference points," Journal of Business Economics, Springer, vol. 86(1), pages 23-33, January.
    9. Liang, Wen Yau & Huang, Chun-Che & Lin, Yin-Chen & Chang, Tsun Hsien & Shih, Meng Hao, 2013. "The multi-objective label correcting algorithm for supply chain modeling," International Journal of Production Economics, Elsevier, vol. 142(1), pages 172-178.
    10. Lakmali Weerasena & Aniekan Ebiefung & Anthony Skjellum, 2022. "Design of a heuristic algorithm for the generalized multi-objective set covering problem," Computational Optimization and Applications, Springer, vol. 82(3), pages 717-751, July.
    11. Zeiträg, Yannik & Figueira, José Rui & Pereira, Miguel Alves, 2024. "A web-based interactive decision support system for a multi-objective lot-sizing and production scheduling model," International Journal of Production Economics, Elsevier, vol. 271(C).
    12. Cem P. Cetinkaya & Mert Can Gunacti, 2018. "Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2867-2884, June.
    13. Derbel, Bilel & Humeau, Jérémie & Liefooghe, Arnaud & Verel, Sébastien, 2014. "Distributed localized bi-objective search," European Journal of Operational Research, Elsevier, vol. 239(3), pages 731-743.
    14. Sahinkoc, H. Mert & Bilge, Ümit, 2022. "A reference set based many-objective co-evolutionary algorithm with an application to the knapsack problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 405-417.
    15. E. Filatovas & O. Kurasova & J. L. Redondo & J. Fernández, 2020. "A reference point-based evolutionary algorithm for approximating regions of interest in multiobjective problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 402-423, July.
    16. Schryen, Guido, 2020. "Parallel computational optimization in operations research: A new integrative framework, literature review and research directions," European Journal of Operational Research, Elsevier, vol. 287(1), pages 1-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeynep Adak & Mahmure Övül Arıoğlu Akan & Serol Bulkan, 0. "Multiprocessor open shop problem: literature review and future directions," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    2. Zeynep Adak & Mahmure Övül Arıoğlu Akan & Serol Bulkan, 2020. "Multiprocessor open shop problem: literature review and future directions," Journal of Combinatorial Optimization, Springer, vol. 40(2), pages 547-569, August.
    3. Lemesre, J. & Dhaenens, C. & Talbi, E.G., 2007. "An exact parallel method for a bi-objective permutation flowshop problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1641-1655, March.
    4. Ana Ruiz & Rubén Saborido & Mariano Luque, 2015. "A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm," Journal of Global Optimization, Springer, vol. 62(1), pages 101-129, May.
    5. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    6. Cabello, J.M. & Ruiz, F. & Pérez-Gladish, B. & Méndez-Rodríguez, P., 2014. "Synthetic indicators of mutual funds’ environmental responsibility: An application of the Reference Point Method," European Journal of Operational Research, Elsevier, vol. 236(1), pages 313-325.
    7. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    8. Framinan, Jose M. & Leisten, Rainer & Ruiz-Usano, Rafael, 2002. "Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation," European Journal of Operational Research, Elsevier, vol. 141(3), pages 559-569, September.
    9. Arroyo, Jose Elias Claudio & Armentano, Vinicius Amaral, 2005. "Genetic local search for multi-objective flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 167(3), pages 717-738, December.
    10. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    11. E. Dhouib & J. Teghem & T. Loukil, 2018. "Non-permutation flowshop scheduling problem with minimal and maximal time lags: theoretical study and heuristic," Annals of Operations Research, Springer, vol. 267(1), pages 101-134, August.
    12. Angelo Aliano Filho & Antonio Carlos Moretti & Margarida Vaz Pato & Washington Alves Oliveira, 2021. "An exact scalarization method with multiple reference points for bi-objective integer linear optimization problems," Annals of Operations Research, Springer, vol. 296(1), pages 35-69, January.
    13. Mariano Luque & Ana Ruiz & Rubén Saborido & Óscar Marcenaro-Gutiérrez, 2015. "On the use of the $$L_{p}$$ L p distance in reference point-based approaches for multiobjective optimization," Annals of Operations Research, Springer, vol. 235(1), pages 559-579, December.
    14. Jiménez, Mariano & Bilbao-Terol, Amelia & Arenas-Parra, Mar, 2021. "Incorporating preferential weights as a benchmark into a Sequential Reference Point Method," European Journal of Operational Research, Elsevier, vol. 291(2), pages 575-585.
    15. Mariano Luque & Salvador Pérez-Moreno & Beatriz Rodríguez, 2016. "Measuring Human Development: A Multi-criteria Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 125(3), pages 713-733, February.
    16. N Madhushini & C Rajendran & Y Deepa, 2009. "Branch-and-bound algorithms for scheduling in permutation flowshops to minimize the sum of weighted flowtime/sum of weighted tardiness/sum of weighted flowtime and weighted tardiness/sum of weighted f," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 991-1004, July.
    17. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    18. Marcenaro-Gutierrez, O.D. & Luque, M. & Ruiz, F., 2010. "An application of multiobjective programming to the study of workers' satisfaction in the Spanish labour market," European Journal of Operational Research, Elsevier, vol. 203(2), pages 430-443, June.
    19. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    20. Ciavotta, Michele & Minella, Gerardo & Ruiz, Rubén, 2013. "Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study," European Journal of Operational Research, Elsevier, vol. 227(2), pages 301-313.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:205:y:2010:i:2:p:390-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.