IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v265y2018i3p813-828.html
   My bibliography  Save this article

A fitness assignment strategy based on the grey and entropy parallel analysis and its application to MOEAAuthor-Name: Zhu, Guang-Yu

Author

Listed:
  • He, Li-Jun
  • Ju, Xue-Wei
  • Zhang, Wei-Bo

Abstract

In this paper, grey and entropy parallel analysis (GEPA) is presented as a new fitness-assignment strategy for solving multi-objective optimization problems. An evolutionary algorithm based on GEPA is proposed, and the grey and entropy parallel relational grade (GEPRG) is used as the fitness value to guide the development of the evolutionary algorithm. Under the analysis of the existing research work, the multi-objective flow shop scheduling problem is chosen as the application object and a flow shop scheduling model with five objectives is established. GEPA_GA, the GA based on GEPA, is described. To verify the performance of the proposed algorithm, GEPA_GA, together with the GA based on the random weighting method (RW_GA), NSGA-II and the GA based on g-dominance (g_GA), are used to optimize the multi-objective flow shop scheduling problem. The experimental data are analyzed by the statistical analysis method, the Kruskal–Wallis test, and three evaluation metrics. The influences of the five grey relational operators and the distinguishing coefficient on the algorithm performance are also studied. Experiments shows that the results obtained by GEPA_GA are better than those of RW_GA, NSGA-II and g_GA even under the situation that the combination of operator and distinguishing coefficient is not the best. It is proven that GEPA_GA works well in solving the multi-objective flow shop scheduling optimization problem, and GEPA is a promising strategy for solving multi-objective optimization problems.

Suggested Citation

  • He, Li-Jun & Ju, Xue-Wei & Zhang, Wei-Bo, 2018. "A fitness assignment strategy based on the grey and entropy parallel analysis and its application to MOEAAuthor-Name: Zhu, Guang-Yu," European Journal of Operational Research, Elsevier, vol. 265(3), pages 813-828.
  • Handle: RePEc:eee:ejores:v:265:y:2018:i:3:p:813-828
    DOI: 10.1016/j.ejor.2017.08.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717307531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.08.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    2. Christian Lücken & Benjamín Barán & Carlos Brizuela, 2014. "A survey on multi-objective evolutionary algorithms for many-objective problems," Computational Optimization and Applications, Springer, vol. 58(3), pages 707-756, July.
    3. Wang, Rui & Purshouse, Robin C. & Fleming, Peter J., 2015. "Preference-inspired co-evolutionary algorithms using weight vectors," European Journal of Operational Research, Elsevier, vol. 243(2), pages 423-441.
    4. Molina, Julin & Santana, Luis V. & Hernandez-Daz, Alfredo G. & Coello Coello, Carlos A. & Caballero, Rafael, 2009. "g-dominance: Reference point based dominance for multiobjective metaheuristics," European Journal of Operational Research, Elsevier, vol. 197(2), pages 685-692, September.
    5. Ana Ruiz & Rubén Saborido & Mariano Luque, 2015. "A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm," Journal of Global Optimization, Springer, vol. 62(1), pages 101-129, May.
    6. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    7. Neppalli, Venkata Ranga & Chen, Chuen-Lung & Gupta, Jatinder N. D., 1996. "Genetic algorithms for the two-stage bicriteria flowshop problem," European Journal of Operational Research, Elsevier, vol. 95(2), pages 356-373, December.
    8. Wang, Rui & Purshouse, Robin C. & Giagkiozis, Ioannis & Fleming, Peter J., 2015. "The iPICEA-g: a new hybrid evolutionary multi-criteria decision making approach using the brushing technique," European Journal of Operational Research, Elsevier, vol. 243(2), pages 442-453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoli Mo & Chunzhi Tan & Weiguo Zhang & Xuezeng Yu, 2023. "Dynamic spatiotemporal correlation coefficient based on adaptive weight," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-43, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    2. Mengjun Ming & Rui Wang & Yabing Zha & Tao Zhang, 2017. "Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm," Energies, MDPI, vol. 10(5), pages 1-15, May.
    3. Ricardo Landa & Giomara Lárraga & Gregorio Toscano, 2019. "Use of a goal-constraint-based approach for finding the region of interest in multi-objective problems," Journal of Heuristics, Springer, vol. 25(1), pages 107-139, February.
    4. Mohamed Abouhawwash & Kalyanmoy Deb, 2021. "Reference point based evolutionary multi-objective optimization algorithms with convergence properties using KKTPM and ASF metrics," Journal of Heuristics, Springer, vol. 27(4), pages 575-614, August.
    5. Yadav, Deepanshu & Nagar, Deepak & Ramu, Palaniappan & Deb, Kalyanmoy, 2023. "Visualization-aided multi-criteria decision-making using interpretable self-organizing maps," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1183-1200.
    6. Wang, Rui & Li, Guozheng & Ming, Mengjun & Wu, Guohua & Wang, Ling, 2017. "An efficient multi-objective model and algorithm for sizing a stand-alone hybrid renewable energy system," Energy, Elsevier, vol. 141(C), pages 2288-2299.
    7. Filipe Alves & Lino A. Costa & Ana Maria A. C. Rocha & Ana I. Pereira & Paulo Leitão, 2022. "The Sustainable Home Health Care Process Based on Multi-Criteria Decision-Support," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
    8. Ana B. Ruiz & Rubén Saborido & José D. Bermúdez & Mariano Luque & Enriqueta Vercher, 2020. "Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences," Journal of Global Optimization, Springer, vol. 76(2), pages 295-315, February.
    9. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    10. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    11. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    12. J. Octavio Gutierrez-Garcia & Kwang Mong Sim, 2012. "GA-based cloud resource estimation for agent-based execution of bag-of-tasks applications," Information Systems Frontiers, Springer, vol. 14(4), pages 925-951, September.
    13. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    14. Yung-Chia Chang & Kuei-Hu Chang & Ching-Ping Zheng, 2022. "Application of a Non-Dominated Sorting Genetic Algorithm to Solve a Bi-Objective Scheduling Problem Regarding Printed Circuit Boards," Mathematics, MDPI, vol. 10(13), pages 1-21, July.
    15. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    16. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    17. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    18. Gui Li & Gai-Ge Wang & Shan Wang, 2021. "Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy for Many-Objective Optimization," Mathematics, MDPI, vol. 9(4), pages 1-34, February.
    19. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    20. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:265:y:2018:i:3:p:813-828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.