IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v262y2017i3p1116-1135.html
   My bibliography  Save this article

From bond yield to macroeconomic instability: A parsimonious affine model

Author

Listed:
  • Recchioni, Maria Cristina
  • Tedeschi, Gabriele

Abstract

We present a hybrid Heston model with a common stochastic volatility to describe government bond yield dynamics. The model is analytically tractable and, therefore, can be efficiently estimated using the maximum likelihood approach and a specific expansion in order to cope with the curse of dimensionality. Twofold is the model contribution. First, it captures changes in the yield volatility and predict future yield values of Germany, French, Italy and Spain. The result is an early-warning indicator which anticipates phases of instability characterizing the time series investigated. Then, the model describes convergence/divergence phenomena among European government bond yields and explores the countries’ reactions to a common monetary policy described through the EONIA interbank rate. We also investigate the potential of this indicator on U.S. data (treasury bills).

Suggested Citation

  • Recchioni, Maria Cristina & Tedeschi, Gabriele, 2017. "From bond yield to macroeconomic instability: A parsimonious affine model," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1116-1135.
  • Handle: RePEc:eee:ejores:v:262:y:2017:i:3:p:1116-1135
    DOI: 10.1016/j.ejor.2017.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717303892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Li, Canlin & Yue, Vivian Z., 2008. "Global yield curve dynamics and interactions: A dynamic Nelson-Siegel approach," Journal of Econometrics, Elsevier, vol. 146(2), pages 351-363, October.
    2. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
    3. Recchioni, Maria Cristina & Tedeschi, Gabriele & Gallegati, Mauro, 2015. "A calibration procedure for analyzing stock price dynamics in an agent-based framework," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 1-25.
    4. Georg Erber, 2011. "Italy’s fiscal crisis," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 46(6), pages 332-339, December.
    5. Afonso, Antonio & Strauch, Rolf, 2007. "Fiscal policy events and interest rate swap spreads: Evidence from the EU," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(3), pages 261-276, July.
    6. Afonso, António & Martins, Manuel M.F., 2012. "Level, slope, curvature of the sovereign yield curve, and fiscal behaviour," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1789-1807.
    7. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    8. Michael Ehrmann & Marcel Fratzscher & Refet S Güürkaynak & Eric T Swanson, 2011. "Convergence and Anchoring of Yield Curves in the Euro Area," The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 350-364, February.
    9. Collin-Dufresne, Pierre & Goldstein, Robert S. & Jones, Christopher S., 2009. "Can interest rate volatility be extracted from the cross section of bond yields?," Journal of Financial Economics, Elsevier, vol. 94(1), pages 47-66, October.
    10. Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
    11. Claudio Borio & Anna Zabai, 2018. "Unconventional monetary policies: a re-appraisal," Chapters, in: Peter Conti-Brown & Rosa M. Lastra (ed.), Research Handbook on Central Banking, chapter 20, pages 398-444, Edward Elgar Publishing.
    12. Walheer, Barnabé, 2016. "Growth and convergence of the OECD countries: A multi-sector production-frontier approach," European Journal of Operational Research, Elsevier, vol. 252(2), pages 665-675.
    13. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    14. Chang, Jinyuan & Chen, Songxi, 2011. "On the Approximate Maximum Likelihood Estimation for Diffusion Processes," MPRA Paper 46279, University Library of Munich, Germany.
    15. Chadha,Jagjit S. & Holly,Sean (ed.), 2011. "Interest Rates, Prices and Liquidity," Cambridge Books, Cambridge University Press, number 9781107014732, September.
    16. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    17. Christophe Rault & António Afonso, 2011. "Long-run Determinants of Sovereign Yields," Economics Bulletin, AccessEcon, vol. 31(1), pages 367-374.
    18. Coroneo, Laura & Nyholm, Ken & Vidova-Koleva, Rositsa, 2011. "How arbitrage-free is the Nelson-Siegel model?," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 393-407, June.
    19. André Lucas & Bernd Schwaab & Xin Zhang, 2014. "Conditional Euro Area Sovereign Default Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 271-284, April.
    20. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    21. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    22. Yu-chin Chen & Kwok Ping Tsang, 2013. "What Does the Yield Curve Tell Us about Exchange Rate Predictability?," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 185-205, March.
    23. Grilli, Ruggero & Tedeschi, Gabriele & Gallegati, Mauro, 2014. "Bank interlinkages and macroeconomic stability," International Review of Economics & Finance, Elsevier, vol. 34(C), pages 72-88.
    24. Chenxu Li & Yu An & Dachuan Chen & Qi Lin & Nian Si, 2016. "Efficient computation of the likelihood expansions for diffusion models," IISE Transactions, Taylor & Francis Journals, vol. 48(12), pages 1156-1171, December.
    25. Filipović, Damir & Mayerhofer, Eberhard & Schneider, Paul, 2013. "Density approximations for multivariate affine jump-diffusion processes," Journal of Econometrics, Elsevier, vol. 176(2), pages 93-111.
    26. Christiane Nickel & Philipp Rother & Jan-Christoph Ruelke, 2011. "Fiscal variables and bond spreads - evidence from Eastern European countries and Turkey," Applied Financial Economics, Taylor & Francis Journals, vol. 21(17), pages 1291-1307.
    27. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    28. David S. Bates, 2006. "Maximum Likelihood Estimation of Latent Affine Processes," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 909-965.
    29. Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2007. "Market price of risk specifications for affine models: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 83(1), pages 123-170, January.
    30. Hautsch, Nikolaus & Ou, Yangguoyi, 2012. "Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2988-3007.
    31. Jens H. E. Christensen & Jose A. Lopez & Glenn D. Rudebusch, 2014. "Can Spanned Term Structure Factors Drive Stochastic Yield Volatility?," Working Paper Series 2014-3, Federal Reserve Bank of San Francisco.
    32. Domenico Giannone & Michèle Lenza & Huw Pill & Lucrezia Reichlin, 2010. "Non‐Standard Monetary Policy Measures," Working Papers ECARES ECARES 2010-040, ULB -- Universite Libre de Bruxelles.
    33. Simone Manganelli & Guido Wolswijk, 2009. "What drives spreads in the euro area government bond market? [‘What “hides” behind sovereign debt ratings?’]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 24(58), pages 191-240.
    34. Constancio, V., 2012. "Contagion and the European debt crisis," Financial Stability Review, Banque de France, issue 16, pages 109-121, April.
    35. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    36. Geert Mesters & Bernd Schwaab & Siem Jan Koopman, 2014. "A Dynamic Yield Curve Model with Stochastic Volatility and Non-Gaussian Interactions: An Empirical Study of Non-standard Monetary Policy in the Euro Area," Tinbergen Institute Discussion Papers 14-071/III, Tinbergen Institute.
    37. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    38. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    39. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    40. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    41. Huang, Yan & Kou, Gang & Peng, Yi, 2017. "Nonlinear manifold learning for early warnings in financial markets," European Journal of Operational Research, Elsevier, vol. 258(2), pages 692-702.
    42. Gregory R. Duffee & Richard H. Stanton, 2012. "Estimation of Dynamic Term Structure Models," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-51.
    43. Vivek Ghosal & Prakash Loungani, 2000. "The Differential Impact of Uncertainty on Investment in Small and Large Businesses," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 338-343, May.
    44. Torben G. Andersen & Luca Benzoni, 2010. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification Test for Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 65(2), pages 603-653, April.
    45. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    46. Carl Chiarella & Oh Kwon, 2003. "Finite Dimensional Affine Realisations of HJM Models in Terms of Forward Rates and Yields," Review of Derivatives Research, Springer, vol. 6(2), pages 129-155, May.
    47. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    48. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    49. Maria Elvira Mancino & Maria Cristina Recchioni, 2015. "Fourier Spot Volatility Estimator: Asymptotic Normality and Efficiency with Liquid and Illiquid High-Frequency Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-33, September.
    50. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    51. Eser, Fabian & Carmona Amaro, Marta & Iacobelli, Stefano & Rubens, Marc, 2012. "The use of the Eurosystem's monetary policy instruments and operational framework since 2009," Occasional Paper Series 135, European Central Bank.
    52. Dai, Qiang & Singleton, Kenneth J., 2002. "Expectation puzzles, time-varying risk premia, and affine models of the term structure," Journal of Financial Economics, Elsevier, vol. 63(3), pages 415-441, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Contessi, Silvio & De Pace, Pierangelo & Guidolin, Massimo, 2020. "Mildly explosive dynamics in U.S. fixed income markets," European Journal of Operational Research, Elsevier, vol. 287(2), pages 712-724.
    2. Roberto Antonietti & Giulia De Masi & Giorgio Ricchiuti, 2020. "Linking FDI Network Topology with the Covid-19 Pandemic," Working Papers - Economics wp2020_18.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    3. Maria Elvira Mancino & Simona Sanfelici, 2020. "Identifying financial instability conditions using high frequency data," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 221-242, January.
    4. Ballestra, Luca Vincenzo & D’Innocenzo, Enzo & Guizzardi, Andrea, 2024. "A new bivariate approach for modeling the interaction between stock volatility and interest rate: An application to S&P500 returns and options," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1185-1194.
    5. Lioui, Abraham & Tarelli, Andrea, 2019. "Macroeconomic environment, money demand and portfolio choice," European Journal of Operational Research, Elsevier, vol. 274(1), pages 357-374.
    6. Francesco Campigli & Gabriele Tedeschi & Maria Cristina Recchioni, 2021. "The talkative variables of the hybrid Heston model: Yields’ maturity and economic (in)stability," Working Papers 2021/03, Economics Department, Universitat Jaume I, Castellón (Spain).
    7. Andrea Mazzocchetti & Eliana Lauretta & Marco Raberto & Andrea Teglio & Silvano Cincotti, 2020. "Systemic financial risk indicators and securitised assets: an agent-based framework," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 9-47, January.
    8. Gabriele Tedeschi & Fabio Caccioli & Maria Cristina Recchioni, 2020. "Taming financial systemic risk: models, instruments and early warning indicators," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 1-7, January.
    9. Giulia Masi & Giorgio Ricchiuti, 2020. "From FDI network topology to macroeconomic instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 133-158, January.
    10. Recchioni, Maria Cristina & Iori, Giulia & Tedeschi, Gabriele & Ouellette, Michelle S., 2021. "The complete Gaussian kernel in the multi-factor Heston model: Option pricing and implied volatility applications," European Journal of Operational Research, Elsevier, vol. 293(1), pages 336-360.
    11. Annarita Colasante & Aurora García-Gallego & Nikolaos Georgantzis & Andrea Morone, 2020. "Voluntary contributions in a system with uncertain returns: a case of systemic risk," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 111-132, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Cristina Recchioni & Gabriele Tedeschi, 2016. "From bond yield to macroeconomic instability: The effect of negative interest rates," Working Papers 2016/06, Economics Department, Universitat Jaume I, Castellón (Spain).
    2. Francesco Campigli & Gabriele Tedeschi & Maria Cristina Recchioni, 2021. "The talkative variables of the hybrid Heston model: Yields’ maturity and economic (in)stability," Working Papers 2021/03, Economics Department, Universitat Jaume I, Castellón (Spain).
    3. Laurini, Márcio P. & Caldeira, João F., 2016. "A macro-finance term structure model with multivariate stochastic volatility," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 68-90.
    4. Leo Krippner, 2009. "A theoretical foundation for the Nelson and Siegel class of yield curve models," Reserve Bank of New Zealand Discussion Paper Series DP2009/10, Reserve Bank of New Zealand.
    5. Takamizawa, Hideyuki, 2022. "How arbitrage-free is the Nelson–Siegel model under stochastic volatility?," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 205-223.
    6. Takamizawa, Hideyuki & 高見澤, 秀幸, 2015. "Impact of No-arbitrage on Interest Rate Dynamics," Working Paper Series G-1-5, Hitotsubashi University Center for Financial Research.
    7. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
    8. Scott Joslin, 2018. "Can Unspanned Stochastic Volatility Models Explain the Cross Section of Bond Volatilities?," Management Science, INFORMS, vol. 64(4), pages 1707-1726, April.
    9. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Bond portfolio optimization using dynamic factor models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 128-158.
    10. Joslin, Scott & Konchitchki, Yaniv, 2018. "Interest rate volatility, the yield curve, and the macroeconomy," Journal of Financial Economics, Elsevier, vol. 128(2), pages 344-362.
    11. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.
    12. Hautsch, Nikolaus & Ou, Yangguoyi, 2012. "Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2988-3007.
    13. Ioannidis, Christos & Ka, Kook, 2018. "The impact of oil price shocks on the term structure of interest rates," Energy Economics, Elsevier, vol. 72(C), pages 601-620.
    14. Bruno Feunou & Jean-Sébastien Fontaine & Anh Le & Christian Lundblad, 2022. "Tractable Term Structure Models," Management Science, INFORMS, vol. 68(11), pages 8411-8429, November.
    15. Creal, Drew D. & Wu, Jing Cynthia, 2015. "Estimation of affine term structure models with spanned or unspanned stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 60-81.
    16. Almeida, Caio & Graveline, Jeremy J. & Joslin, Scott, 2011. "Do interest rate options contain information about excess returns?," Journal of Econometrics, Elsevier, vol. 164(1), pages 35-44, September.
    17. Shin, Minchul & Zhong, Molin, 2017. "Does realized volatility help bond yield density prediction?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 373-389.
    18. Siem Jan Koopman & Max I.P. Mallee & Michel van der Wel, 2007. "Analyzing the Term Structure of Interest Rates using the Dynamic Nelson-Siegel Model with Time-Varying Parameters," Tinbergen Institute Discussion Papers 07-095/4, Tinbergen Institute.
    19. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Switching Nelson-Siegel Models," BAFFI CAREFIN Working Papers 19106, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    20. Afonso, António & Martins, Manuel M.F., 2012. "Level, slope, curvature of the sovereign yield curve, and fiscal behaviour," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1789-1807.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:262:y:2017:i:3:p:1116-1135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.