IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v58y2003i1p69-85.html
   My bibliography  Save this article

A path following method for box-constrained multiobjective optimization with applications to goal programming problems

Author

Listed:
  • Maria Cristina Recchioni

Abstract

We propose a path following method to find the Pareto optimal solutions of a box-constrained multiobjective optimization problem. Under the assumption that the objective functions are Lipschitz continuously differentiable we prove some necessary conditions for Pareto optimal points and we give a necessary condition for the existence of a feasible point that minimizes all given objective functions at once. We develop a method that looks for the Pareto optimal points as limit points of the trajectories solutions of suitable initial value problems for a system of ordinary differential equations. These trajectories belong to the feasible region and their computation is well suited for a parallel implementation. Moreover the method does not use any scalarization of the multiobjective optimization problem and does not require any ordering information for the components of the vector objective function. We show a numerical experience on some test problems and we apply the method to solve a goal programming problem. Copyright Springer-Verlag 2003

Suggested Citation

  • Maria Cristina Recchioni, 2003. "A path following method for box-constrained multiobjective optimization with applications to goal programming problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(1), pages 69-85, September.
  • Handle: RePEc:spr:mathme:v:58:y:2003:i:1:p:69-85
    DOI: 10.1007/s001860300281
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860300281
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860300281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    2. Lourdes Uribe & Johan M Bogoya & Andrés Vargas & Adriana Lara & Günter Rudolph & Oliver Schütze, 2020. "A Set Based Newton Method for the Averaged Hausdorff Distance for Multi-Objective Reference Set Problems," Mathematics, MDPI, vol. 8(10), pages 1-29, October.
    3. Honggang Wang, 2013. "Zigzag Search for Continuous Multiobjective Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 654-665, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:58:y:2003:i:1:p:69-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.