Concise RLT forms of binary programs: A computational study of the quadratic knapsack problem
Author
Abstract
Suggested Citation
DOI: 10.1002/nav.20364
Download full text from publisher
References listed on IDEAS
- Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
- Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
- Muhittin Oral & Ossama Kettani, 1992. "A Linearization Procedure for Quadratic and Cubic Mixed-Integer Problems," Operations Research, INFORMS, vol. 40(1-supplem), pages 109-116, February.
- W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
- Hanif D. Sherali & Warren P. Adams & Patrick J. Driscoll, 1998. "Exploiting Special Structures in Constructing a Hierarchy of Relaxations for 0-1 Mixed Integer Problems," Operations Research, INFORMS, vol. 46(3), pages 396-405, June.
- R. Lougee-Heimer & W. Adams, 2005. "A Conditional Logic Approach for Strengthening Mixed 0-1 Linear Programs," Annals of Operations Research, Springer, vol. 139(1), pages 289-320, October.
- Caprara, Alberto, 2008. "Constrained 0-1 quadratic programming: Basic approaches and extensions," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1494-1503, June.
- D. J. Laughhunn, 1970. "Quadratic Binary Programming with Application to Capital-Budgeting Problems," Operations Research, INFORMS, vol. 18(3), pages 454-461, June.
- Park, Kyungchul & Lee, Kyungsik & Park, Sungsoo, 1996. "An extended formulation approach to the edge-weighted maximal clique problem," European Journal of Operational Research, Elsevier, vol. 95(3), pages 671-682, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sarang Deo & Milind Sohoni, 2015. "Optimal Decentralization of Early Infant Diagnosis of HIV in Resource-Limited Settings," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 191-207, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fabio Furini & Emiliano Traversi, 2019. "Theoretical and computational study of several linearisation techniques for binary quadratic problems," Annals of Operations Research, Springer, vol. 279(1), pages 387-411, August.
- David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
- Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
- W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
- Chang, Ching-Ter, 2000. "An efficient linearization approach for mixed-integer problems," European Journal of Operational Research, Elsevier, vol. 123(3), pages 652-659, June.
- Britta Schulze & Michael Stiglmayr & Luís Paquete & Carlos M. Fonseca & David Willems & Stefan Ruzika, 2020. "On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 107-132, August.
- Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2023. "A general purpose exact solution method for mixed integer concave minimization problems," European Journal of Operational Research, Elsevier, vol. 309(3), pages 977-992.
- Nihal Berktaş & Hande Yaman, 2021. "A Branch-and-Bound Algorithm for Team Formation on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1162-1176, July.
- Richard J. Forrester & Lucas A. Waddell, 2022. "Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 498-517, August.
- Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
- C. Helmberg & F. Rendl & R. Weismantel, 2000. "A Semidefinite Programming Approach to the Quadratic Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 4(2), pages 197-215, June.
- Scott Kolodziej & Pedro Castro & Ignacio Grossmann, 2013. "Global optimization of bilinear programs with a multiparametric disaggregation technique," Journal of Global Optimization, Springer, vol. 57(4), pages 1039-1063, December.
- Rostami, Borzou & Chassein, André & Hopf, Michael & Frey, Davide & Buchheim, Christoph & Malucelli, Federico & Goerigk, Marc, 2018. "The quadratic shortest path problem: complexity, approximability, and solution methods," European Journal of Operational Research, Elsevier, vol. 268(2), pages 473-485.
- Alain Billionnet & Éric Soutif, 2004. "Using a Mixed Integer Programming Tool for Solving the 0–1 Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 188-197, May.
- Gabriel Lopez Zenarosa & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2021. "On exact solution approaches for bilevel quadratic 0–1 knapsack problem," Annals of Operations Research, Springer, vol. 298(1), pages 555-572, March.
- R. Lougee-Heimer & W. Adams, 2005. "A Conditional Logic Approach for Strengthening Mixed 0-1 Linear Programs," Annals of Operations Research, Springer, vol. 139(1), pages 289-320, October.
- Christoph Buchheim & Emiliano Traversi, 2018. "Quadratic Combinatorial Optimization Using Separable Underestimators," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 424-437, August.
- Daniele Pretolani, 2014. "Apportionments with minimum Gini index of disproportionality: a Quadratic Knapsack approach," Annals of Operations Research, Springer, vol. 215(1), pages 257-267, April.
- Warren Adams & Hanif Sherali, 2005. "A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems," Annals of Operations Research, Springer, vol. 140(1), pages 21-47, November.
- Fishburn, Peter C. & LaValle, Irving H., 1996. "Binary interactions and subset choice," European Journal of Operational Research, Elsevier, vol. 92(1), pages 182-192, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:57:y:2010:i:1:p:1-12. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.