IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v286y2020i1d10.1007_s10479-018-3092-8.html
   My bibliography  Save this article

Strong RLT1 bounds from decomposable Lagrangean relaxation for some quadratic 0–1 optimization problems with linear constraints

Author

Listed:
  • Monique Guignard

    (University of Pennsylvania)

Abstract

The Reformulation Linearization Technique (RLT) of Sherali and Adams (Manag Sci 32(10):1274–1290, 1986; SIAM J Discrete Math 3(3):411–430, 1990), when applied to a pure 0–1 quadratic optimization problem with linear constraints (P), constructs a hierarchy of LP (i.e., continuous and linear) models of increasing sizes. These provide monotonically improving continuous bounds on the optimal value of (P) as the level, i.e., the stage in the process, increases. When the level reaches the dimension of the original solution space, the last model provides an LP bound equal to the IP optimum. In practice, unfortunately, the problem size increases so rapidly that for large instances, even computing bounds for RLT models of level k (called RLTk) for small k may be challenging. Their size and their complexity increase drastically with k. To our knowledge, only results for bounds of levels 1, 2, and 3 have been reported in the literature. We are proposing, for certain quadratic problem types, a way of producing stronger bounds than continuous RLT1 bounds in a fraction of the time it would take to compute continuous RLT2 bounds. The approach consists in applying a specific decomposable Lagrangean relaxation to a specially constructed RLT1-type linear 0–1 model. If the overall Lagrangean problem does not have the integrality property, and if it can be solved as a 0–1 rather than a continuous problem, one may be able to obtain 0–1 RLT1 bounds of roughly the same quality as standard continuous RLT2 bounds, but in a fraction of the time and with much smaller storage requirements. If one actually decomposes the Lagrangean relaxation model, this two-step procedure, reformulation plus decomposed Lagrangean relaxation, will produce linear 0–1 Lagrangean subproblems with a dimension no larger than that of the original model. We first present numerical results for the Crossdock Door Assignment Problem, a special case of the Generalized Quadratic Assignment Problem. These show that just solving one Lagrangean relaxation problem in 0–1 variables produces a bound close to or better than the standard continuous RLT2 bound (when available) but much faster, especially for larger instances, even if one does not actually decompose the Lagrangean problem. We then present numerical results for the 0–1 quadratic knapsack problem, for which no RLT2 bounds are available to our knowledge, but we show that solving an initial Lagrangean relaxation of a specific 0–1 RLT1 decomposable model drastically improves the quality of the bounds. In both cases, solving the fully decomposed rather than the decomposable Lagrangean problem to optimality will make it feasible to compute such bounds for instances much too large for computing the standard continuous RLT2 bounds.

Suggested Citation

  • Monique Guignard, 2020. "Strong RLT1 bounds from decomposable Lagrangean relaxation for some quadratic 0–1 optimization problems with linear constraints," Annals of Operations Research, Springer, vol. 286(1), pages 173-200, March.
  • Handle: RePEc:spr:annopr:v:286:y:2020:i:1:d:10.1007_s10479-018-3092-8
    DOI: 10.1007/s10479-018-3092-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3092-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3092-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    2. Zvi Drezner & Peter Hahn & Éeric Taillard, 2005. "Recent Advances for the Quadratic Assignment Problem with Special Emphasis on Instances that are Difficult for Meta-Heuristic Methods," Annals of Operations Research, Springer, vol. 139(1), pages 65-94, October.
    3. Warren P. Adams & Hanif D. Sherali, 1986. "A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems," Management Science, INFORMS, vol. 32(10), pages 1274-1290, October.
    4. Pessoa, Artur Alves & Hahn, Peter M. & Guignard, Monique & Zhu, Yi-Rong, 2010. "Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique," European Journal of Operational Research, Elsevier, vol. 206(1), pages 54-63, October.
    5. Billionnet, Alain & Calmels, Frederic, 1996. "Linear programming for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 92(2), pages 310-325, July.
    6. Adams, Warren P. & Guignard, Monique & Hahn, Peter M. & Hightower, William L., 2007. "A level-2 reformulation-linearization technique bound for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 983-996, August.
    7. C. Beltran & F. J. Heredia, 2005. "An Effective Line Search for the Subgradient Method," Journal of Optimization Theory and Applications, Springer, vol. 125(1), pages 1-18, April.
    8. Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
    9. Mikhail A. Bragin & Peter B. Luh & Joseph H. Yan & Nanpeng Yu & Gary A. Stern, 2015. "Convergence of the Surrogate Lagrangian Relaxation Method," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 173-201, January.
    10. X. Zhao & P. B. Luh & J. Wang, 1999. "Surrogate Gradient Algorithm for Lagrangian Relaxation," Journal of Optimization Theory and Applications, Springer, vol. 100(3), pages 699-712, March.
    11. Peter M. Hahn & Yi-Rong Zhu & Monique Guignard & William L. Hightower & Matthew J. Saltzman, 2012. "A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 202-209, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Asghari & Amir M. Fathollahi-Fard & S. M. J. Mirzapour Al-e-hashem & Maxim A. Dulebenets, 2022. "Transformation and Linearization Techniques in Optimization: A State-of-the-Art Survey," Mathematics, MDPI, vol. 10(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nihal Berktaş & Hande Yaman, 2021. "A Branch-and-Bound Algorithm for Team Formation on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1162-1176, July.
    2. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam, 2021. "Quadratic assignment problem variants: A survey and an effective parallel memetic iterated tabu search," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1066-1084.
    3. Caprara, Alberto, 2008. "Constrained 0-1 quadratic programming: Basic approaches and extensions," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1494-1503, June.
    4. Pessoa, Artur Alves & Hahn, Peter M. & Guignard, Monique & Zhu, Yi-Rong, 2010. "Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique," European Journal of Operational Research, Elsevier, vol. 206(1), pages 54-63, October.
    5. Huizhen Zhang & Cesar Beltran-Royo & Liang Ma, 2013. "Solving the quadratic assignment problem by means of general purpose mixed integer linear programming solvers," Annals of Operations Research, Springer, vol. 207(1), pages 261-278, August.
    6. Stefan Helber & Daniel Böhme & Farid Oucherif & Svenja Lagershausen & Steffen Kasper, 2016. "A hierarchical facility layout planning approach for large and complex hospitals," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 5-29, June.
    7. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    8. Peter Hahn & J. MacGregor Smith & Yi-Rong Zhu, 2010. "The Multi-Story Space Assignment Problem," Annals of Operations Research, Springer, vol. 179(1), pages 77-103, September.
    9. Nyberg, Axel & Westerlund, Tapio, 2012. "A new exact discrete linear reformulation of the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 314-319.
    10. Alexandre Domingues Gonçalves & Artur Alves Pessoa & Cristiana Bentes & Ricardo Farias & Lúcia Maria de A. Drummond, 2017. "A Graphics Processing Unit Algorithm to Solve the Quadratic Assignment Problem Using Level-2 Reformulation-Linearization Technique," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 676-687, November.
    11. Lucas A. Waddell & Jerry L. Phillips & Tianzhu Liu & Swarup Dhar, 2023. "An LP-based characterization of solvable QAP instances with chess-board and graded structures," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-23, July.
    12. Peter M. Hahn & Yi-Rong Zhu & Monique Guignard & William L. Hightower & Matthew J. Saltzman, 2012. "A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 202-209, May.
    13. Palubeckis, Gintaras, 2015. "Fast simulated annealing for single-row equidistant facility layout," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 287-301.
    14. de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.
    15. Ketan Date & Rakesh Nagi, 2019. "Level 2 Reformulation Linearization Technique–Based Parallel Algorithms for Solving Large Quadratic Assignment Problems on Graphics Processing Unit Clusters," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 771-789, October.
    16. David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
    17. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    18. Sven Mallach, 2021. "Inductive linearization for binary quadratic programs with linear constraints," 4OR, Springer, vol. 19(4), pages 549-570, December.
    19. Krešimir Mihić & Kevin Ryan & Alan Wood, 2018. "Randomized Decomposition Solver with the Quadratic Assignment Problem as a Case Study," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 295-308, May.
    20. Richárd Molnár-Szipai & Anita Varga, 2019. "Integrating combinatorial algorithms into a linear programming solver," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 475-482, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:286:y:2020:i:1:d:10.1007_s10479-018-3092-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.