IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v11y2006i4d10.1007_s10878-006-8462-5.html
   My bibliography  Save this article

Polyhedral combinatorics of the cardinality constrained quadratic knapsack problem and the quadratic selective travelling salesman problem

Author

Listed:
  • Vicky Mak

    (Deakin University)

  • Tommy Thomadsen

    (Technical University of Denmark)

Abstract

This paper considers the Cardinality Constrained Quadratic Knapsack Problem (QKP) and the Quadratic Selective Travelling Salesman Problem (QSTSP). The QKP is a generalization of the Knapsack Problem and the QSTSP is a generalization of the Travelling Salesman Problem. Thus, both problems are NP hard. The QSTSP and the QKP can be solved using branch-and-cut methods. Good bounds can be obtained if strong constraints are used. Hence it is important to identify strong or even facet-defining constraints. This paper studies the polyhedral combinatorics of the QSTSP and the QKP, i.e. amongst others we identify facet-defining constraints for the QSTSP and the QKP, and provide mathematical proofs that they do indeed define facets.

Suggested Citation

  • Vicky Mak & Tommy Thomadsen, 2006. "Polyhedral combinatorics of the cardinality constrained quadratic knapsack problem and the quadratic selective travelling salesman problem," Journal of Combinatorial Optimization, Springer, vol. 11(4), pages 421-434, June.
  • Handle: RePEc:spr:jcomop:v:11:y:2006:i:4:d:10.1007_s10878-006-8462-5
    DOI: 10.1007/s10878-006-8462-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-006-8462-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-006-8462-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gouveia, Luis & Manuel Pires, Jose, 2001. "Models for a Steiner ring network design problem with revenues," European Journal of Operational Research, Elsevier, vol. 133(1), pages 21-31, August.
    2. Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
    3. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1998. "Solving the Orienteering Problem through Branch-and-Cut," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 133-148, May.
    4. Petra Bauer, 1997. "The Circuit Polytope: Facets," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 110-145, February.
    5. Billionnet, Alain & Calmels, Frederic, 1996. "Linear programming for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 92(2), pages 310-325, July.
    6. Erkut, Erhan, 1990. "The discrete p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 46(1), pages 48-60, May.
    7. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1997. "A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem," Operations Research, INFORMS, vol. 45(3), pages 378-394, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang Yang & Jiacheng Li & Lei Li, 2020. "Time-Dependent Theme Park Routing Problem by Partheno-Genetic Algorithm," Mathematics, MDPI, vol. 8(12), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    2. W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
    3. Gorka Kobeaga & María Merino & Jose A. Lozano, 2021. "On solving cycle problems with Branch-and-Cut: extending shrinking and exact subcycle elimination separation algorithms," Annals of Operations Research, Springer, vol. 305(1), pages 107-136, October.
    4. Andrea Lodi & Enrico Malaguti & Nicolás E. Stier-Moses & Tommaso Bonino, 2016. "Design and Control of Public-Service Contracts and an Application to Public Transportation Systems," Management Science, INFORMS, vol. 62(4), pages 1165-1187, April.
    5. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    6. Caprara, Alberto, 2008. "Constrained 0-1 quadratic programming: Basic approaches and extensions," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1494-1503, June.
    7. J Renaud & F F Boctor & G Laporte, 2004. "Efficient heuristics for Median Cycle Problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 179-186, February.
    8. Jesus Cunha & Luidi Simonetti & Abilio Lucena, 2016. "Lagrangian heuristics for the Quadratic Knapsack Problem," Computational Optimization and Applications, Springer, vol. 63(1), pages 97-120, January.
    9. Alain Billionnet & Éric Soutif, 2004. "Using a Mixed Integer Programming Tool for Solving the 0–1 Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 188-197, May.
    10. Dontas, Michael & Sideris, Georgios & Manousakis, Eleftherios G. & Zachariadis, Emmanouil E., 2023. "An adaptive memory matheuristic for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1010-1023.
    11. Billionnet, Alain & Soutif, Eric, 2004. "An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 157(3), pages 565-575, September.
    12. Prokopyev, Oleg A. & Kong, Nan & Martinez-Torres, Dayna L., 2009. "The equitable dispersion problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 59-67, August.
    13. Archetti, C. & Carrabs, F. & Cerulli, R. & Laureana, F., 2024. "A new formulation and a branch-and-cut algorithm for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 314(2), pages 446-465.
    14. Z. Y. Wu & Y. J. Yang & F. S. Bai & M. Mammadov, 2011. "Global Optimality Conditions and Optimization Methods for Quadratic Knapsack Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 241-259, November.
    15. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    16. H Tang & E Miller-Hooks, 2005. "Algorithms for a stochastic selective travelling salesperson problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 439-452, April.
    17. Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    18. Nihal Berktaş & Hande Yaman, 2021. "A Branch-and-Bound Algorithm for Team Formation on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1162-1176, July.
    19. Gilbert Laporte & Jorge Riera-Ledesma & Juan-José Salazar-González, 2003. "A Branch-and-Cut Algorithm for the Undirected Traveling Purchaser Problem," Operations Research, INFORMS, vol. 51(6), pages 940-951, December.
    20. David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:11:y:2006:i:4:d:10.1007_s10878-006-8462-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.