IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v181y2007i2p527-548.html
   My bibliography  Save this article

A hybrid simplex search and particle swarm optimization for unconstrained optimization

Author

Listed:
  • Fan, Shu-Kai S.
  • Zahara, Erwie

Abstract

No abstract is available for this item.

Suggested Citation

  • Fan, Shu-Kai S. & Zahara, Erwie, 2007. "A hybrid simplex search and particle swarm optimization for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 181(2), pages 527-548, September.
  • Handle: RePEc:eee:ejores:v:181:y:2007:i:2:p:527-548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)00471-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Russell R. Barton & John S. Ivey, Jr., 1996. "Nelder-Mead Simplex Modifications for Simulation Optimization," Management Science, INFORMS, vol. 42(7), pages 954-973, July.
    2. George E. P. Box, 1957. "Evolutionary Operation: A Method for Increasing Industrial Productivity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 6(2), pages 81-101, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Yi & Liu, John J. & Hu, Yi & Wang, Yingfeng & Lai, Kin Keung & Wang, Shouyang, 2014. "A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 1-11.
    2. Jianfeng Liu & Nikolaos Ploskas & Nikolaos V. Sahinidis, 2019. "Tuning BARON using derivative-free optimization algorithms," Journal of Global Optimization, Springer, vol. 74(4), pages 611-637, August.
    3. Xu, Meng & Droguett, Enrique López & Lins, Isis Didier & das Chagas Moura, Márcio, 2017. "On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 93-105.
    4. Khalid Abdulaziz Alnowibet & Salem Mahdi & Ahmad M. Alshamrani & Karam M. Sallam & Ali Wagdy Mohamed, 2022. "A Family of Hybrid Stochastic Conjugate Gradient Algorithms for Local and Global Minimization Problems," Mathematics, MDPI, vol. 10(19), pages 1-37, October.
    5. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).
    6. Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2011. "A hybrid shuffled complex evolution approach with pattern search for unconstrained optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1901-1909.
    7. Morteza Ahandani & Mohammad-Taghi Vakil-Baghmisheh & Mohammad Talebi, 2014. "Hybridizing local search algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 725-748, December.
    8. Weihang Zhu, 2011. "Massively parallel differential evolution—pattern search optimization with graphics hardware acceleration: an investigation on bound constrained optimization problems," Journal of Global Optimization, Springer, vol. 50(3), pages 417-437, July.
    9. Paweł Ziółkowski & Łukasz Witanowski & Stanisław Głuch & Piotr Klonowicz & Michel Feidt & Aimad Koulali, 2024. "Example of Using Particle Swarm Optimization Algorithm with Nelder–Mead Method for Flow Improvement in Axial Last Stage of Gas–Steam Turbine," Energies, MDPI, vol. 17(12), pages 1-29, June.
    10. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    11. Jakubik, Johannes & Binding, Adrian & Feuerriegel, Stefan, 2021. "Directed particle swarm optimization with Gaussian-process-based function forecasting," European Journal of Operational Research, Elsevier, vol. 295(1), pages 157-169.
    12. Shu-Kai S. Fan & Chih-Hung Jen, 2019. "An Enhanced Partial Search to Particle Swarm Optimization for Unconstrained Optimization," Mathematics, MDPI, vol. 7(4), pages 1-16, April.
    13. Liou, Cheng-Dar & Hsieh, Yi-Chih, 2015. "A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 258-267.
    14. Kuo, R.J. & Lee, Y.H. & Zulvia, Ferani E. & Tien, F.C., 2015. "Solving bi-level linear programming problem through hybrid of immune genetic algorithm and particle swarm optimization algorithm," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1013-1026.
    15. Ferreiro, Ana M. & García-Rodríguez, José Antonio & Vázquez, Carlos & e Silva, E. Costa & Correia, A., 2019. "Parallel two-phase methods for global optimization on GPU," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 67-90.
    16. Maryam Mousavi & Hwa Jen Yap & Siti Nurmaya Musa & Farzad Tahriri & Siti Zawiah Md Dawal, 2017. "Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    2. W. Liu & Y. H. Dai, 2001. "Minimization Algorithms Based on Supervisor and Searcher Cooperation," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 359-379, November.
    3. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    4. Sudarshan Kumar & Tiziana Di Matteo & Anindya S. Chakrabarti, 2020. "Disentangling shock diffusion on complex networks: Identification through graph planarity," Papers 2001.01518, arXiv.org.
    5. Rosen, Scott L. & Harmonosky, Catherine M. & Traband, Mark T., 2007. "A simulation optimization method that considers uncertainty and multiple performance measures," European Journal of Operational Research, Elsevier, vol. 181(1), pages 315-330, August.
    6. David G. Humphrey & James R. Wilson, 2000. "A Revised Simplex Search Procedure for Stochastic Simulation Response Surface Optimization," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 272-283, November.
    7. Alkhamis, Talal M. & Ahmed, Mohamed A., 2006. "A modified Hooke and Jeeves algorithm with likelihood ratio performance extrapolation for simulation optimization," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1802-1815, November.
    8. Hachicha, Wafik & Ammeri, Ahmed & Masmoudi, Faouzi & Chachoub, Habib, 2010. "A comprehensive literature classification of simulation optimisation methods," MPRA Paper 27652, University Library of Munich, Germany.
    9. Yingjie Tang & Zheren Zhang & Zheng Xu, 2020. "Analysis and Design of Damping Circuit Parameters for LCC Valves Based on Broadband Model," Energies, MDPI, vol. 13(5), pages 1-21, February.
    10. Mishra, SK, 2007. "Performance of Differential Evolution Method in Least Squares Fitting of Some Typical Nonlinear Curves," MPRA Paper 4634, University Library of Munich, Germany.
    11. Ozden, Mufit & Ho, Yu-Chi, 2003. "A probabilistic solution-generator for simulation," European Journal of Operational Research, Elsevier, vol. 146(1), pages 35-51, April.
    12. Eltinge John L. & Biemer Paul P. & Holmberg Anders, 2013. "A Potential Framework for Integration of Architecture and Methodology to Improve Statistical Production Systems," Journal of Official Statistics, Sciendo, vol. 29(1), pages 125-145, March.
    13. Chang, Kuo-Hao, 2015. "A direct search method for unconstrained quantile-based simulation optimization," European Journal of Operational Research, Elsevier, vol. 246(2), pages 487-495.
    14. Francesco Battaglia, 2001. "Genetic alghorithms, pseudo-random number generators, and Markov chain Monte Carlo methods," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1-2), pages 129-154.
    15. Neddermeijer, H.G. & Piersma, N. & van Oortmarssen, G.J. & Habbema, J.D.F. & Dekker, R., 1999. "Comparison of response surface methodology and the Nelder and Mead simplex method for optimization in microsimulation models," Econometric Institute Research Papers EI 9924-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Galip Altinay, 2003. "Estimating growth rate in the presence of serially correlated errors," Applied Economics Letters, Taylor & Francis Journals, vol. 10(15), pages 967-970.
    17. Chang, Kuo-Hao, 2012. "Stochastic Nelder–Mead simplex method – A new globally convergent direct search method for simulation optimization," European Journal of Operational Research, Elsevier, vol. 220(3), pages 684-694.
    18. Kao, Chiang & Chen, Shih-Pin, 2006. "A stochastic quasi-Newton method for simulation response optimization," European Journal of Operational Research, Elsevier, vol. 173(1), pages 30-46, August.
    19. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.
    20. Kuo-Hao Chang & L. Jeff Hong & Hong Wan, 2013. "Stochastic Trust-Region Response-Surface Method (STRONG)---A New Response-Surface Framework for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 230-243, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:181:y:2007:i:2:p:527-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.