IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v29y2013i1p125-145n7.html
   My bibliography  Save this article

A Potential Framework for Integration of Architecture and Methodology to Improve Statistical Production Systems

Author

Listed:
  • Eltinge John L.

    (Bureau of Labor Statistics, Postal Square Building, 2 Massachusetts Avenue, NE Washington DC, U.S.A.)

  • Biemer Paul P.

    (RTI, Research Triangle Park, NC 27709-2194, U.S.A.)

  • Holmberg Anders

    (Statistics Sweden, Box 24300, SE-701 89 Örebro, Sweden)

Abstract

This article outlines a framework for formal description, justification and evaluation in development of architectures for large-scale statistical production systems. Following an introduction of the main components of the framework, we consider four related issues: (1) Use of some simple schematic models for survey quality, cost, risk, and stakeholder utility to outline several groups of questions that may inform decisions on system design and architecture. (2) Integration of system architecture with models for total survey quality (TSQ) and adaptive total design (ATD). (3) Possible use of concepts from the Generic Statistical Business Process Model (GSBPM) and the Generic Statistical Information Model (GSIM). (4) The role of governance processes in the practical implementation of these ideas.

Suggested Citation

  • Eltinge John L. & Biemer Paul P. & Holmberg Anders, 2013. "A Potential Framework for Integration of Architecture and Methodology to Improve Statistical Production Systems," Journal of Official Statistics, Sciendo, vol. 29(1), pages 125-145, March.
  • Handle: RePEc:vrs:offsta:v:29:y:2013:i:1:p:125-145:n:7
    DOI: 10.2478/jos-2013-0007
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2013-0007
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2013-0007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Kreuter & K. Olson & J. Wagner & T. Yan & T. M. Ezzati‐Rice & C. Casas‐Cordero & M. Lemay & A. Peytchev & R. M. Groves & T. E. Raghunathan, 2010. "Using proxy measures and other correlates of survey outcomes to adjust for non‐response: examples from multiple surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 389-407, April.
    2. Robert M. Groves & Steven G. Heeringa, 2006. "Responsive design for household surveys: tools for actively controlling survey errors and costs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 439-457, July.
    3. Calinescu, Melania & Bhulai, Sandjai & Schouten, Barry, 2013. "Optimal resource allocation in survey designs," European Journal of Operational Research, Elsevier, vol. 226(1), pages 115-121.
    4. George E. P. Box, 1957. "Evolutionary Operation: A Method for Increasing Industrial Productivity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 6(2), pages 81-101, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Asaph Young & Schouten Barry & Wagner James, 2017. "JOS Special Issue on Responsive and Adaptive Survey Design: Looking Back to See Forward – Editorial: In Memory of Professor Stephen E. Fienberg, 1942–2016," Journal of Official Statistics, Sciendo, vol. 33(3), pages 571-577, September.
    2. Andy Peytchev, 2013. "Consequences of Survey Nonresponse," The ANNALS of the American Academy of Political and Social Science, , vol. 645(1), pages 88-111, January.
    3. Roger Tourangeau & J. Michael Brick & Sharon Lohr & Jane Li, 2017. "Adaptive and responsive survey designs: a review and assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 203-223, January.
    4. Durrant Gabriele B. & Maslovskaya Olga & Smith Peter W. F., 2017. "Using Prior Wave Information and Paradata: Can They Help to Predict Response Outcomes and Call Sequence Length in a Longitudinal Study?," Journal of Official Statistics, Sciendo, vol. 33(3), pages 801-833, September.
    5. Frauke Kreuter, 2013. "Facing the Nonresponse Challenge," The ANNALS of the American Academy of Political and Social Science, , vol. 645(1), pages 23-35, January.
    6. Lynn, Peter, 2013. "Targeted response inducement strategies on longitudinal surveys," Understanding Society Working Paper Series 2013-02, Understanding Society at the Institute for Social and Economic Research.
    7. Brady T. West & Dan Li, 2019. "Sources of Variance in the Accuracy of Interviewer Observations," Sociological Methods & Research, , vol. 48(3), pages 485-533, August.
    8. Brick J. Michael, 2013. "Unit Nonresponse and Weighting Adjustments: A Critical Review," Journal of Official Statistics, Sciendo, vol. 29(3), pages 329-353, June.
    9. Tobias Gummer, 2019. "Assessing Trends and Decomposing Change in Nonresponse Bias: The Case of Bias in Cohort Distributions," Sociological Methods & Research, , vol. 48(1), pages 92-115, February.
    10. Frauke Kreuter & Kristen Olson, 2011. "Multiple Auxiliary Variables in Nonresponse Adjustment," Sociological Methods & Research, , vol. 40(2), pages 311-332, May.
    11. Kristen Olson, 2013. "Paradata for Nonresponse Adjustment," The ANNALS of the American Academy of Political and Social Science, , vol. 645(1), pages 142-170, January.
    12. McCarthy Jaki & Wagner James & Sanders Herschel Lisette, 2017. "The Impact of Targeted Data Collection on Nonresponse Bias in an Establishment Survey: A Simulation Study of Adaptive Survey Design," Journal of Official Statistics, Sciendo, vol. 33(3), pages 857-871, September.
    13. Burger Joep & Perryck Koen & Schouten Barry, 2017. "Robustness of Adaptive Survey Designs to Inaccuracy of Design Parameters," Journal of Official Statistics, Sciendo, vol. 33(3), pages 687-708, September.
    14. Ashmead Robert & Slud Eric & Hughes Todd, 2017. "Adaptive Intervention Methodology for Reduction of Respondent Contact Burden in the American Community Survey," Journal of Official Statistics, Sciendo, vol. 33(4), pages 901-919, December.
    15. Gabriele B. Durrant & Sylke V. Schnepf, 2018. "Which schools and pupils respond to educational achievement surveys?: a focus on the English Programme for International Student Assessment sample," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1057-1075, October.
    16. Early Kirstin & Mankoff Jennifer & Fienberg Stephen E., 2017. "Dynamic Question Ordering in Online Surveys," Journal of Official Statistics, Sciendo, vol. 33(3), pages 625-657, September.
    17. David Cutler & Kaushik Ghosh & Irina Bondarenko & Kassandra Messer & Trivellore Raghunathan & Susan Stewart & Allison B. Rosen, 2018. "Attributing Medical Spending to Conditions: A Comparison of Methods," NBER Working Papers 25233, National Bureau of Economic Research, Inc.
    18. Reza C. Daniels, 2012. "A Framework for Investigating Micro Data Quality, with Application to South African Labour Market Household Surveys," SALDRU Working Papers 90, Southern Africa Labour and Development Research Unit, University of Cape Town.
    19. Reist, Benjamin M. & Rodhouse, Joseph B. & Ball, Shane T. & Young, Linda J., 2019. "Subsampling of Nonrespondents in the 2017 Census of Agriculture," NASS Research Reports 322826, United States Department of Agriculture, National Agricultural Statistics Service.
    20. Lewis Taylor, 2017. "Univariate Tests for Phase Capacity: Tools for Identifying When to Modify a Survey’s Data Collection Protocol," Journal of Official Statistics, Sciendo, vol. 33(3), pages 601-624, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:29:y:2013:i:1:p:125-145:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.