IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v181y2007i1p315-330.html
   My bibliography  Save this article

A simulation optimization method that considers uncertainty and multiple performance measures

Author

Listed:
  • Rosen, Scott L.
  • Harmonosky, Catherine M.
  • Traband, Mark T.

Abstract

No abstract is available for this item.

Suggested Citation

  • Rosen, Scott L. & Harmonosky, Catherine M. & Traband, Mark T., 2007. "A simulation optimization method that considers uncertainty and multiple performance measures," European Journal of Operational Research, Elsevier, vol. 181(1), pages 315-330, August.
  • Handle: RePEc:eee:ejores:v:181:y:2007:i:1:p:315-330
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)00422-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James S. Dyer & Rakesh K. Sarin, 1979. "Measurable Multiattribute Value Functions," Operations Research, INFORMS, vol. 27(4), pages 810-822, August.
    2. Teleb, Radi & Azadivar, Farhad, 1994. "A methodology for solvng multi-objective simulation-optimization problems," European Journal of Operational Research, Elsevier, vol. 72(1), pages 135-145, January.
    3. A. M. Geoffrion & J. S. Dyer & A. Feinberg, 1972. "An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department," Management Science, INFORMS, vol. 19(4-Part-1), pages 357-368, December.
    4. Stephen M. Robinson, 1996. "Analysis of Sample-Path Optimization," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 513-528, August.
    5. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834, October.
    6. Russell R. Barton & John S. Ivey, Jr., 1996. "Nelder-Mead Simplex Modifications for Simulation Optimization," Management Science, INFORMS, vol. 42(7), pages 954-973, July.
    7. G. Guerkan & A.Y. Oezge & S.M. Robinson, 1994. "Sample-Path Optimization in Simulation," Working Papers wp94070, International Institute for Applied Systems Analysis.
    8. Sigrún Andradóttir, 1995. "A Method for Discrete Stochastic Optimization," Management Science, INFORMS, vol. 41(12), pages 1946-1961, December.
    9. Mahmoud H. Alrefaei & Sigrún Andradóttir, 1999. "A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization," Management Science, INFORMS, vol. 45(5), pages 748-764, May.
    10. John Butler & Douglas J. Morrice & Peter W. Mullarkey, 2001. "A Multiple Attribute Utility Theory Approach to Ranking and Selection," Management Science, INFORMS, vol. 47(6), pages 800-816, June.
    11. Alkhamis, Talal M. & Ahmed, Mohamed A. & Tuan, Vu Kim, 1999. "Simulated annealing for discrete optimization with estimation," European Journal of Operational Research, Elsevier, vol. 116(3), pages 530-544, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Mohamed A. & Alkhamis, Talal M., 2009. "Simulation optimization for an emergency department healthcare unit in Kuwait," European Journal of Operational Research, Elsevier, vol. 198(3), pages 936-942, November.
    2. Nikolaos Argyris & Alec Morton & José Rui Figueira, 2014. "CUT: A Multicriteria Approach for Concavifiable Preferences," Operations Research, INFORMS, vol. 62(3), pages 633-642, June.
    3. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    4. Price, Robert R. & Singh, Bhupinder P. & MacKinnon, Robert J. & David Sevougian, S., 2013. "The application of systems engineering principles to the prioritization of sustainable nuclear fuel cycle options," Energy Policy, Elsevier, vol. 53(C), pages 205-217.
    5. Lee, Loo Hay & Chew, Ek Peng & Teng, Suyan & Chen, Yankai, 2008. "Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem," European Journal of Operational Research, Elsevier, vol. 189(2), pages 476-491, September.
    6. Marttunen, Mika & Haara, Arto & Hjerppe, Turo & Kurttila, Mikko & Liesiö, Juuso & Mustajoki, Jyri & Saarikoski, Heli & Tolvanen, Anne, 2023. "Parallel and comparative use of three multicriteria decision support methods in an environmental portfolio problem," European Journal of Operational Research, Elsevier, vol. 307(2), pages 842-859.
    7. William K. Klimack & Jack M. Kloeber & Kenneth W. Bauer & Mark E. Oxley, 2015. "An Empirical Examination of Multiple Objective Risk Attitudes," Decision Analysis, INFORMS, vol. 12(2), pages 96-103, June.
    8. Alrefaei, Mahmoud H. & Alawneh, Ameen J., 2005. "Solution quality of random search methods for discrete stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(2), pages 115-125.
    9. Schneider, Frank, 2008. "Multiple criteria decision making in application layer networks," Bayreuth Reports on Information Systems Management 36, University of Bayreuth, Chair of Information Systems Management.
    10. Aksoy, Yasemin & Butler, Timothy W. & Minor, Elliott D., 1996. "Comparative studies in interactive multiple objective mathematical programming," European Journal of Operational Research, Elsevier, vol. 89(2), pages 408-422, March.
    11. Figueira, José Rui & Oliveira, Henrique M. & Serro, Ana Paula & Colaço, Rogério & Froes, Filipe & Robalo Cordeiro, Carlos & Diniz, António & Guimarães, Miguel, 2023. "A multiple criteria approach for building a pandemic impact assessment composite indicator: The case of COVID-19 in Portugal," European Journal of Operational Research, Elsevier, vol. 309(2), pages 795-818.
    12. Nigussie, Yalemzewd & van der Werf, Edwin & Zhu, Xueqin & Simane, Belay & van Ierland, Ekko C., 2018. "Evaluation of Climate Change Adaptation Alternatives for Smallholder Farmers in the Upper Blue-Nile Basin," Ecological Economics, Elsevier, vol. 151(C), pages 142-150.
    13. Gabriela D. Oliveira & Luis C. Dias, 2020. "The potential learning effect of a MCDA approach on consumer preferences for alternative fuel vehicles," Annals of Operations Research, Springer, vol. 293(2), pages 767-787, October.
    14. Kao, Chiang & Chen, Shih-Pin, 2006. "A stochastic quasi-Newton method for simulation response optimization," European Journal of Operational Research, Elsevier, vol. 173(1), pages 30-46, August.
    15. Arsham H., 1998. "Techniques for Monte Carlo Optimizing," Monte Carlo Methods and Applications, De Gruyter, vol. 4(3), pages 181-230, December.
    16. Carland, Corinne & Goentzel, Jarrod & Montibeller, Gilberto, 2018. "Modeling the values of private sector agents in multi-echelon humanitarian supply chains," European Journal of Operational Research, Elsevier, vol. 269(2), pages 532-543.
    17. Behnam Malakooti, 2015. "Double Helix Value Functions, Ordinal/Cardinal Approach, Additive Utility Functions, Multiple Criteria, Decision Paradigm, Process, and Types (Z Theory I)," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1353-1400, November.
    18. Mikhail Timonin, 2012. "Maximization of the Choquet integral over a convex set and its application to resource allocation problems," Annals of Operations Research, Springer, vol. 196(1), pages 543-579, July.
    19. Sigrún Andradóttir, 2002. "Simulation Optimization: Integrating Research and Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 216-219, August.
    20. Juergen Branke & Wen Zhang, 2019. "Identifying efficient solutions via simulation: myopic multi-objective budget allocation for the bi-objective case," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 831-865, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:181:y:2007:i:1:p:315-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.