IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v42y1996i7p954-973.html
   My bibliography  Save this article

Nelder-Mead Simplex Modifications for Simulation Optimization

Author

Listed:
  • Russell R. Barton

    (Department of Industrial and Systems Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802)

  • John S. Ivey, Jr.

    (The Eastman Kodak Company, Rochester, New York 14650)

Abstract

When the Nelder-Mead method is used to optimize the expected response of a stochastic system (e.g., an output of a discrete-event simulation model), the simplex-resizing steps of the method introduce risks of inappropriate termination. We give analytical and empirical results describing the performance of Nelder-Mead when it is applied to a response function that incorporates an additive white-noise error, and we use these results to develop new modifications of Nelder-Mead that yield improved estimates of the optimal expected response. Compared to Nelder-Mead, the best performance was obtained by a modified method, RS + S9, in which (a) the best point in the simplex is reevaluated at each shrink, step and (b) the simplex is reduced by 10% (rather than 50%) at each shrink step. In a suite of 18 test problems that were adapted from the MINPACK collection of NETLIB, the expected response at the estimated optimal point obtained by RS + S9 had errors that averaged 15% less than at the original method's estimated optimal point, at an average cost of three times as many function evaluations. Two well-known existing modifications for stochastic responses, the (n + 3)-rule and the next-to-worst rule, were found to be inferior to the new modification RS + S9.

Suggested Citation

  • Russell R. Barton & John S. Ivey, Jr., 1996. "Nelder-Mead Simplex Modifications for Simulation Optimization," Management Science, INFORMS, vol. 42(7), pages 954-973, July.
  • Handle: RePEc:inm:ormnsc:v:42:y:1996:i:7:p:954-973
    DOI: 10.1287/mnsc.42.7.954
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.42.7.954
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.42.7.954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Shu-Kai S. & Zahara, Erwie, 2007. "A hybrid simplex search and particle swarm optimization for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 181(2), pages 527-548, September.
    2. Hachicha, Wafik & Ammeri, Ahmed & Masmoudi, Faouzi & Chachoub, Habib, 2010. "A comprehensive literature classification of simulation optimisation methods," MPRA Paper 27652, University Library of Munich, Germany.
    3. Kuo-Hao Chang & L. Jeff Hong & Hong Wan, 2013. "Stochastic Trust-Region Response-Surface Method (STRONG)---A New Response-Surface Framework for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 230-243, May.
    4. Chang, Kuo-Hao, 2015. "A direct search method for unconstrained quantile-based simulation optimization," European Journal of Operational Research, Elsevier, vol. 246(2), pages 487-495.
    5. Chang, Kuo-Hao, 2012. "Stochastic Nelder–Mead simplex method – A new globally convergent direct search method for simulation optimization," European Journal of Operational Research, Elsevier, vol. 220(3), pages 684-694.
    6. Kao, Chiang & Chen, Shih-Pin, 2006. "A stochastic quasi-Newton method for simulation response optimization," European Journal of Operational Research, Elsevier, vol. 173(1), pages 30-46, August.
    7. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    8. Rosen, Scott L. & Harmonosky, Catherine M. & Traband, Mark T., 2007. "A simulation optimization method that considers uncertainty and multiple performance measures," European Journal of Operational Research, Elsevier, vol. 181(1), pages 315-330, August.
    9. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    10. Neddermeijer, H.G. & Piersma, N. & van Oortmarssen, G.J. & Habbema, J.D.F. & Dekker, R., 1999. "Comparison of response surface methodology and the Nelder and Mead simplex method for optimization in microsimulation models," Econometric Institute Research Papers EI 9924-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Arsham H., 1998. "Techniques for Monte Carlo Optimizing," Monte Carlo Methods and Applications, De Gruyter, vol. 4(3), pages 181-230, December.
    12. W. Liu & Y. H. Dai, 2001. "Minimization Algorithms Based on Supervisor and Searcher Cooperation," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 359-379, November.
    13. Pinto, Roberto, 2016. "Stock rationing under a profit satisficing objective," Omega, Elsevier, vol. 65(C), pages 55-68.
    14. Galip Altinay, 2003. "Estimating growth rate in the presence of serially correlated errors," Applied Economics Letters, Taylor & Francis Journals, vol. 10(15), pages 967-970.
    15. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.
    16. David G. Humphrey & James R. Wilson, 2000. "A Revised Simplex Search Procedure for Stochastic Simulation Response Surface Optimization," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 272-283, November.
    17. Jeroen J. van den Broek & Nicolien T. van Ravesteyn & Eveline A. Heijnsdijk & Harry J. de Koning, 2018. "Simulating the Impact of Risk-Based Screening and Treatment on Breast Cancer Outcomes with MISCAN-Fadia," Medical Decision Making, , vol. 38(1_suppl), pages 54-65, April.
    18. Alkhamis, Talal M. & Ahmed, Mohamed A., 2006. "A modified Hooke and Jeeves algorithm with likelihood ratio performance extrapolation for simulation optimization," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1802-1815, November.
    19. Ozden, Mufit & Ho, Yu-Chi, 2003. "A probabilistic solution-generator for simulation," European Journal of Operational Research, Elsevier, vol. 146(1), pages 35-51, April.
    20. Sudarshan Kumar & Tiziana Di Matteo & Anindya S. Chakrabarti, 2020. "Disentangling shock diffusion on complex networks: Identification through graph planarity," Papers 2001.01518, arXiv.org.
    21. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:42:y:1996:i:7:p:954-973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.