IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0169817.html
   My bibliography  Save this article

Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization

Author

Listed:
  • Maryam Mousavi
  • Hwa Jen Yap
  • Siti Nurmaya Musa
  • Farzad Tahriri
  • Siti Zawiah Md Dawal

Abstract

Flexible manufacturing system (FMS) enhances the firm’s flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs’ battery charge. Assessment of the numerical examples’ scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.

Suggested Citation

  • Maryam Mousavi & Hwa Jen Yap & Siti Nurmaya Musa & Farzad Tahriri & Siti Zawiah Md Dawal, 2017. "Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-24, March.
  • Handle: RePEc:plo:pone00:0169817
    DOI: 10.1371/journal.pone.0169817
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169817
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0169817&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0169817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fan, Shu-Kai S. & Zahara, Erwie, 2007. "A hybrid simplex search and particle swarm optimization for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 181(2), pages 527-548, September.
    2. Cheng-Dar Liou & Yi-Chih Hsieh & Yin-Yann Chen, 2013. "A new encoding scheme-based hybrid algorithm for minimising two-machine flow-shop group scheduling problem," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(1), pages 77-93.
    3. Ventura, José A. & Pazhani, Subramanian & Mendoza, Abraham, 2015. "Finding optimal dwell points for automated guided vehicles in general guide-path layouts," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 850-861.
    4. Nearchou, A.C.Andreas C., 2004. "The effect of various operators on the genetic search for large scheduling problems," International Journal of Production Economics, Elsevier, vol. 88(2), pages 191-203, March.
    5. Chelouah, Rachid & Siarry, Patrick, 2003. "Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions," European Journal of Operational Research, Elsevier, vol. 148(2), pages 335-348, July.
    6. Du, Wen-Bo & Gao, Yang & Liu, Chen & Zheng, Zheng & Wang, Zhen, 2015. "Adequate is better: particle swarm optimization with limited-information," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 832-838.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nan Zhao & Chun Feng, 2023. "Research on Multi-AGV Task Allocation in Train Unit Maintenance Workshop," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    2. Jianxun Li & Wenjie Cheng & Kin Keung Lai & Bhagwat Ram, 2022. "Multi-AGV Flexible Manufacturing Cell Scheduling Considering Charging," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    3. Adrian Kampa & Iwona Paprocka, 2021. "Analysis of Energy Efficient Scheduling of the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Shutdown Times," Energies, MDPI, vol. 14(21), pages 1-25, November.
    4. Zhuoling Jiang & Xiaodong Zhang & Pei Wang, 2023. "Grid-Map-Based Path Planning and Task Assignment for Multi-Type AGVs in a Distribution Warehouse," Mathematics, MDPI, vol. 11(13), pages 1-20, June.
    5. Moussa Abderrahim & Abdelghani Bekrar & Damien Trentesaux & Nassima Aissani & Karim Bouamrane, 2020. "Manufacturing 4.0 Operations Scheduling with AGV Battery Management Constraints," Energies, MDPI, vol. 13(18), pages 1-19, September.
    6. Wenxiang Xu & Shunsheng Guo, 2019. "A Multi-Objective and Multi-Dimensional Optimization Scheduling Method Using a Hybrid Evolutionary Algorithms with a Sectional Encoding Mode," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    7. Yangkun Xia & Zhuo Fu & Lijun Pan & Fenghua Duan, 2018. "Tabu search algorithm for the distance-constrained vehicle routing problem with split deliveries by order," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liou, Cheng-Dar & Hsieh, Yi-Chih, 2015. "A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 258-267.
    2. Morteza Ahandani & Mohammad-Taghi Vakil-Baghmisheh & Mohammad Talebi, 2014. "Hybridizing local search algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 725-748, December.
    3. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    4. Hvattum, Lars Magnus & Glover, Fred, 2009. "Finding local optima of high-dimensional functions using direct search methods," European Journal of Operational Research, Elsevier, vol. 195(1), pages 31-45, May.
    5. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    6. Poorzahedy, Hossain & Rouhani, Omid M., 2007. "Hybrid meta-heuristic algorithms for solving network design problem," European Journal of Operational Research, Elsevier, vol. 182(2), pages 578-596, October.
    7. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    8. Jakubik, Johannes & Binding, Adrian & Feuerriegel, Stefan, 2021. "Directed particle swarm optimization with Gaussian-process-based function forecasting," European Journal of Operational Research, Elsevier, vol. 295(1), pages 157-169.
    9. Ahmad Lashkaripour, 2014. "Markups, International Specialization, and the Gains from Trade," 2014 Papers pla686, Job Market Papers.
    10. Kuo, R.J. & Lee, Y.H. & Zulvia, Ferani E. & Tien, F.C., 2015. "Solving bi-level linear programming problem through hybrid of immune genetic algorithm and particle swarm optimization algorithm," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1013-1026.
    11. Mohamed A Mohamed & Ali M Eltamaly & Abdulrahman I Alolah, 2016. "PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    12. Sun, Peng Gang & Sun, Xiya, 2017. "Complete graph model for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 88-97.
    13. Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2011. "A hybrid shuffled complex evolution approach with pattern search for unconstrained optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1901-1909.
    14. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    15. Kuo-Hsiung Wang & Cheng-Dar Liou & Ya-Lin Wang, 2014. "Profit optimisation of the multiple-vacation machine repair problem using particle swarm optimisation," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(8), pages 1769-1780, August.
    16. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    17. Beaulieu, Martin & Bentahar, Omar, 2021. "Digitalization of the healthcare supply chain: A roadmap to generate benefits and effectively support healthcare delivery," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    18. K A H Kobbacy & S Vadera & M H Rasmy, 2007. "AI and OR in management of operations: history and trends," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 10-28, January.
    19. Shuaipeng Yuan & Tieke Li & Bailin Wang, 2021. "A discrete differential evolution algorithm for flow shop group scheduling problem with sequence-dependent setup and transportation times," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 427-439, February.
    20. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0169817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.