IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v157y2004i2p501-513.html
   My bibliography  Save this article

Self-organising behaviour in the presence of negative externalities: A conceptual model of commuter choice

Author

Listed:
  • van Ackere, Ann
  • Larsen, Erik R.

Abstract

No abstract is available for this item.

Suggested Citation

  • van Ackere, Ann & Larsen, Erik R., 2004. "Self-organising behaviour in the presence of negative externalities: A conceptual model of commuter choice," European Journal of Operational Research, Elsevier, vol. 157(2), pages 501-513, September.
  • Handle: RePEc:eee:ejores:v:157:y:2004:i:2:p:501-513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(03)00237-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfa, Attahiru Sule, 1989. "Departure rate and route assignment of commuter traffic during peak period," Transportation Research Part B: Methodological, Elsevier, vol. 23(5), pages 337-344, October.
    2. Richard Arnott, 1989. "Does Providing Information to Drivers Reduce Traffic Congestion?," Discussion Papers 864, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Venkatesh Bala & Sanjeev Goyal, 1998. "Learning from Neighbours," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 595-621.
    4. Iida, Yasunori & Akiyama, Takamasa & Uchida, Takashi, 1992. "Experimental analysis of dynamic route choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 26(1), pages 17-32, February.
    5. Alfa, Attahiru Sule, 1986. "A review of models for the temporal distribution of peak traffic demand," Transportation Research Part B: Methodological, Elsevier, vol. 20(6), pages 491-499, December.
    6. Kai Nagel & Steen Rasmussen, 1994. "Traffic at the Edge of Chaos," Working Papers 94-06-032, Santa Fe Institute.
    7. G. F. Newell, 1988. "Traffic Flow for the Morning Commute," Transportation Science, INFORMS, vol. 22(1), pages 47-58, February.
    8. Sanjeev Dewan & Haim Mendelson, 1990. "User Delay Costs and Internal Pricing for a Service Facility," Management Science, INFORMS, vol. 36(12), pages 1502-1517, December.
    9. Hani S. Mahmassani & Gang-Len Chang, 1987. "On Boundedly Rational User Equilibrium in Transportation Systems," Transportation Science, INFORMS, vol. 21(2), pages 89-99, May.
    10. Mahmassani, Hani S. & Herman, Robert, 1987. "Interaction of trip decisions and traffic systems dynamics," European Journal of Operational Research, Elsevier, vol. 30(3), pages 304-317, June.
    11. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1996. "Information and Usage of Free-Access Congestible Facilities with Stochastic Capacity and Demand," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(1), pages 181-203, February.
    12. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    13. Horowitz, Joel L., 1984. "The stability of stochastic equilibrium in a two-link transportation network," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 13-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongler, Max-Olivier & Gallay, Olivier & Hülsmann, Michael & Cordes, Philip & Colmorn, Richard, 2010. "Centralized versus decentralized control—A solvable stylized model in transportation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4162-4171.
    2. Gallay, Olivier & Hongler, Max-Olivier, 2009. "Circulation of autonomous agents in production and service networks," International Journal of Production Economics, Elsevier, vol. 120(2), pages 378-388, August.
    3. Li, Xue-yan & Li, Xue-mei & Yang, Lingrun & Li, Jing, 2018. "Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 77-92.
    4. van Ackere, Ann & Haxholdt, Christian & Larsen, Erik R., 2013. "Dynamic capacity adjustments with reactive customers," Omega, Elsevier, vol. 41(4), pages 689-705.
    5. Oliveira, Fernando S., 2010. "Limitations of learning in automata-based systems," European Journal of Operational Research, Elsevier, vol. 203(3), pages 684-691, June.
    6. Li, Xue-yan & Li, Xue-mei & Li, Xue-wei & Qiu, He-ting, 2017. "Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 405-419.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfa, Attahiru Sule & Chen, Mingyuan, 1995. "Temporal distribution of public transport demand during the peak period," European Journal of Operational Research, Elsevier, vol. 83(1), pages 137-153, May.
    2. Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
    3. Sang Nguyen & Stefano Pallottino & Federico Malucelli, 2001. "A Modeling Framework for Passenger Assignment on a Transport Network with Timetables," Transportation Science, INFORMS, vol. 35(3), pages 238-249, August.
    4. Kenneth A. Small & Xuehao Chu, 2003. "Hypercongestion," Journal of Transport Economics and Policy, University of Bath, vol. 37(3), pages 319-352, September.
    5. Navid Khademi & Mojtaba Rajabi & Afshin S. Mohaymany & Mahdi Samadzad, 2016. "Day-to-day travel time perception modeling using an adaptive-network-based fuzzy inference system (ANFIS)," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 25-52, March.
    6. Dahlgren, Joy, 1998. "High occupancy vehicle lanes: Not always more effective than general purpose lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(2), pages 99-114, February.
    7. Erel Avineri & Joseph Prashker, 2006. "The Impact of Travel Time Information on Travelers’ Learning under Uncertainty," Transportation, Springer, vol. 33(4), pages 393-408, July.
    8. Emmerink, R., 1993. "Effects of information in road transport networks with recurrent congestion," Serie Research Memoranda 0065, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    9. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    10. Erik T. Verhoef, 1998. "An Integrated Dynamic Model of Road Traffic Congestion based on Simple Car-Following Theory," Tinbergen Institute Discussion Papers 98-030/3, Tinbergen Institute.
    11. Verhoef, Erik T., 1999. "Time, speeds, flows and densities in static models of road traffic congestion and congestion pricing," Regional Science and Urban Economics, Elsevier, vol. 29(3), pages 341-369, May.
    12. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    13. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
    14. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2021. "Leaving the tub: The nature and dynamics of hypercongestion in a bathtub model with a restricted downstream exit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    15. Peer, Stefanie & Verhoef, Erik T., 2013. "Equilibrium at a bottleneck when long-run and short-run scheduling preferences diverge," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 12-27.
    16. Erik Verhoef, 1997. "Time-Varying Tolls in a Dynamic Model of Road Traffic Congestion with Elastic Demand," Tinbergen Institute Discussion Papers 97-028/3, Tinbergen Institute.
    17. C. Robin Lindsey & Erik T. Verhoef, 1999. "Congestion Modelling," Tinbergen Institute Discussion Papers 99-091/3, Tinbergen Institute.
    18. Xiao, Yu & Coulombel, Nicolas & Palma, André de, 2017. "The valuation of travel time reliability: does congestion matter?," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 113-141.
    19. Xiaomei Zhao & Chunhua Wan & Jun Bi, 2019. "Day-to-Day Assignment Models and Traffic Dynamics Under Information Provision," Networks and Spatial Economics, Springer, vol. 19(2), pages 473-502, June.
    20. Richard H. M. Emmerink & Paul van Beek, 1997. "Empirical Analysis of Work Schedule Flexibility: Implications for Road Pricing and Driver Information Systems," Urban Studies, Urban Studies Journal Limited, vol. 34(2), pages 217-234, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:157:y:2004:i:2:p:501-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.