IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i19p4162-4171.html
   My bibliography  Save this article

Centralized versus decentralized control—A solvable stylized model in transportation

Author

Listed:
  • Hongler, Max-Olivier
  • Gallay, Olivier
  • Hülsmann, Michael
  • Cordes, Philip
  • Colmorn, Richard

Abstract

Today’s supply networks consist of a certain amount of logistics objects that are enabled to interact with each other and to decide autonomously upon their next steps; in other words, they exhibit a certain degree of autonomous cooperation. Therefore, modern logistics research regards them as complex adaptive logistics systems. In order to analyze evolving dynamics and underlying implications for the respective systems’ behavior as well as the potential outcomes resulting from the interaction between autonomous decision-making “smart parts”, we propose in this contribution a fully solvable stylized model. We consider a population of homogeneous, autonomous interacting agents traveling on R with a given velocity that is itself corrupted by White Gaussian Noise. Based on real time observations of the positions of his neighbors, each agent is allowed to adapt his traveling velocity. These agent interactions are restricted to neighboring entities confined in finite spatial clusters (i.e. we have range-limited interactions). In the limit of a large population of neighboring agents, a mean-field dynamics can be derived and, for small interaction range, the resulting dynamics coincides with the exactly solvable Burgers’ nonlinear field equation. Explicit Burgers’ solution enables to explicitly appreciate the emergent structure due to the local and individual agent interactions. In particular, for strongly interactive regimes in the present model, the resulting spatial distribution of agents converges to a shock wave pattern. To compare performances of centralized versus decentralized organization, we assign cost functions incurred when velocity adaptations are triggered either by multi-agent interactions or by central control. The multi-agent cumulative costs are then compared with the costs that would be incurred by implementing an effective optimal central controller able, for a given time horizon, to reproduce an identical spatial probability distribution of agents. The resulting optimal control problem can be solved exactly and the corresponding costs can be expressed as the Kullback–Leibler relative entropy between the free and the controlled probability measures. This enables one to conclude that for time horizons shorter than a critical value, multi-agent interactions generate smaller cumulative costs than an optimal effective central controller.

Suggested Citation

  • Hongler, Max-Olivier & Gallay, Olivier & Hülsmann, Michael & Cordes, Philip & Colmorn, Richard, 2010. "Centralized versus decentralized control—A solvable stylized model in transportation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4162-4171.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:19:p:4162-4171
    DOI: 10.1016/j.physa.2010.05.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110004772
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.05.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McKelvey, Bill & Wycisk, Christine & Hülsmann, Michael, 2009. "Designing an electronic auction market for complex 'smart parts' logistics: Options based on LeBaron's computational stock market," International Journal of Production Economics, Elsevier, vol. 120(2), pages 476-494, August.
    2. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    3. van Ackere, Ann & Larsen, Erik R., 2004. "Self-organising behaviour in the presence of negative externalities: A conceptual model of commuter choice," European Journal of Operational Research, Elsevier, vol. 157(2), pages 501-513, September.
    4. R. Donner, 2008. "Multivariate analysis of spatially heterogeneous phase synchronisation in complex systems: application to self-organised control of material flows in networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 63(3), pages 349-361, June.
    5. V. Alfi & M. Cristelli & L. Pietronero & A. Zaccaria, 2009. "Minimal agent based model for financial markets I," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(3), pages 385-397, February.
    6. Hülsmann, Michael & Grapp, Jörn & Li, Ying, 2008. "Strategic adaptivity in global supply chains--Competitive advantage by autonomous cooperation," International Journal of Production Economics, Elsevier, vol. 114(1), pages 14-26, July.
    7. Gallay, Olivier & Hongler, Max-Olivier, 2009. "Circulation of autonomous agents in production and service networks," International Journal of Production Economics, Elsevier, vol. 120(2), pages 378-388, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallay, Olivier & Hongler, Max-Olivier, 2009. "Circulation of autonomous agents in production and service networks," International Journal of Production Economics, Elsevier, vol. 120(2), pages 378-388, August.
    2. McKelvey, Bill & Wycisk, Christine & Hülsmann, Michael, 2009. "Designing an electronic auction market for complex 'smart parts' logistics: Options based on LeBaron's computational stock market," International Journal of Production Economics, Elsevier, vol. 120(2), pages 476-494, August.
    3. Monira Essa Aloud, 2016. "Profitability of Directional Change Based Trading Strategies: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 87-95.
    4. Zhou, Wei & Piramuthu, Selwyn, 2012. "Manufacturing with item-level RFID information: From macro to micro quality control," International Journal of Production Economics, Elsevier, vol. 135(2), pages 929-938.
    5. F. Tao & Y. Cheng & L. Zhang & A. Y. C. Nee, 2017. "Advanced manufacturing systems: socialization characteristics and trends," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1079-1094, June.
    6. Liao, Shu-Hsien & Hu, Da-Chian & Ding, Li-Wen, 2017. "Assessing the influence of supply chain collaboration value innovation, supply chain capability and competitive advantage in Taiwan's networking communication industry," International Journal of Production Economics, Elsevier, vol. 191(C), pages 143-153.
    7. Omurtag, Ahmet & Sirovich, Lawrence, 2006. "Modeling a large population of traders: Mimesis and stability," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 562-576, December.
    8. Li Lin & Didier Sornette, 2009. "Diagnostics of Rational Expectation Financial Bubbles with Stochastic Mean-Reverting Termination Times," Papers 0911.1921, arXiv.org.
    9. Toth, Gabor & Galam, Serge, 2022. "Deviations from the majority: A local flip model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Feng, Cheng-Min & Wu, Pei-Ju, 2009. "A tax savings model for the emerging global manufacturing network," International Journal of Production Economics, Elsevier, vol. 122(2), pages 534-546, December.
    11. Shiryaev, Albert N. & Zhitlukhin, Mikhail N. & Ziemba, William T., 2014. "Land and stock bubbles, crashes and exit strategies in Japan circa 1990 and in 2013," LSE Research Online Documents on Economics 59288, London School of Economics and Political Science, LSE Library.
    12. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    13. Katahira, Kei & Chen, Yu & Akiyama, Eizo, 2021. "Self-organized Speculation Game for the spontaneous emergence of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    14. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    15. Mark Fackrell & Peter Taylor & Jiesen Wang, 2021. "Strategic customer behavior in an M/M/1 feedback queue," Queueing Systems: Theory and Applications, Springer, vol. 97(3), pages 223-259, April.
    16. Li, Xue-yan & Li, Xue-mei & Yang, Lingrun & Li, Jing, 2018. "Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 77-92.
    17. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Endogenous Liquidity Crises," Post-Print hal-02567495, HAL.
    18. Roberto Mota Navarro & Hernán Larralde, 2017. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-27, February.
    19. Norman Schofield, 2015. "Climate Change, Collapse and Social Choice Theory," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 9(1), pages 007-035, October.
    20. Khalil, Nagi & Toral, Raúl, 2019. "The noisy voter model under the influence of contrarians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 81-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:19:p:4162-4171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.