IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v469y2017icp405-419.html
   My bibliography  Save this article

Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos

Author

Listed:
  • Li, Xue-yan
  • Li, Xue-mei
  • Li, Xue-wei
  • Qiu, He-ting

Abstract

This paper proposes a new framework of fare optimization & game model for studying the competition between two travel modes (high speed railway and civil aviation) in which passengers’ group behavior is taken into consideration. The small-world network is introduced to construct the multi-agent model of passengers’ travel mode choice. The cumulative prospect theory is adopted to depict passengers’ bounded rationality, the heterogeneity of passengers’ reference point is depicted using the idea of group emotion computing. The conceptions of “Langton parameter” and “evolution entropy” in the theory of “edge of chaos” are introduced to create passengers’ “decision coefficient” and “evolution entropy of travel mode choice” which are used to quantify passengers’ group behavior. The numerical simulation and the analysis of passengers’ behavior show that (1) the new model inherits the features of traditional model well and the idea of self-organizing traffic flow evolution fully embodies passengers’ bounded rationality, (2) compared with the traditional model (logit model), when passengers are in the “edge of chaos” state, the total profit of the transportation system is higher.

Suggested Citation

  • Li, Xue-yan & Li, Xue-mei & Li, Xue-wei & Qiu, He-ting, 2017. "Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 405-419.
  • Handle: RePEc:eee:phsmap:v:469:y:2017:i:c:p:405-419
    DOI: 10.1016/j.physa.2016.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116308275
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Hongli & Lou, Yingyan & Yin, Yafeng & Zhou, Jing, 2011. "A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 311-328, February.
    2. Schimit, P.H.T. & Santos, B.O. & Soares, C.A., 2015. "Evolution of cooperation in Axelrod tournament using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 204-217.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. M. Rieser & K. Nagel, 2008. "Network breakdown “at the edge of chaos” in multi-agent traffic simulations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 63(3), pages 321-327, June.
    5. John H. Miller & Scott E. Page, 2007. "Social Science in Between, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    6. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    7. Clark, Derek J. & Jørgensen, Finn & Mathisen, Terje Andreas, 2011. "Relationships between fares, trip length and market competition," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 611-624, August.
    8. van Ackere, Ann & Larsen, Erik R., 2004. "Self-organising behaviour in the presence of negative externalities: A conceptual model of commuter choice," European Journal of Operational Research, Elsevier, vol. 157(2), pages 501-513, September.
    9. Tanimoto, Jun & Nakamura, Kousuke, 2016. "Social dilemma structure hidden behind traffic flow with route selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 92-99.
    10. de Moraes Ramos, Giselle & Daamen, Winnie & Hoogendoorn, Serge, 2013. "Modelling travellers' heterogeneous route choice behaviour as prospect maximizers," Journal of choice modelling, Elsevier, vol. 6(C), pages 17-33.
    11. Álvarez-SanJaime, Óscar & Cantos-Sanchez, Pedro & Moner-Colonques, Rafael & Sempere-Monerris, Jose J., 2015. "A model of internal and external competition in a High Speed Rail line," Economics of Transportation, Elsevier, vol. 4(3), pages 178-187.
    12. Ruan, Yuhong & Li, Anwei, 2016. "A new small-world network created by Cellular Automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 106-111.
    13. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    14. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    15. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    16. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    17. Abhik Roy & Dominique M. Hanssens & Jagmohan S. Raju, 1994. "Competitive Pricing by a Price Leader," Management Science, INFORMS, vol. 40(7), pages 809-823, July.
    18. Kemel, Emmanuel & Paraschiv, Corina, 2013. "Prospect Theory for joint time and money consequences in risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 81-95.
    19. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    20. Shen, Weiwei & Xiao, Weizhou & Wang, Xin, 2016. "Passenger satisfaction evaluation model for Urban rail transit: A structural equation modeling based on partial least squares," Transport Policy, Elsevier, vol. 46(C), pages 20-31.
    21. Chorus, Caspar G. & Timmermans, Harry J.P., 2009. "Measuring user benefits of changes in the transport system when traveler awareness is limited," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 536-547, June.
    22. John H. Miller & Scott E. Page, 2007. "Complexity in Social Worlds, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    23. Capozza, Claudia, 2016. "The effect of rail travel time on airline fares: First evidence from the Italian passenger market," Economics of Transportation, Elsevier, vol. 6(C), pages 18-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xueyan & Qiu, Heting & Yang, Yanni & Zhang, Hankun, 2022. "Differentiated fares depend on bus line and time for urban public transport network based on travelers’ day-to-day group behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Peiwen Zhang & Rui Ding & Wenke Zhao & Liaodong Zhang & Hong Sun, 2022. "Passenger Travel Path Selection Based on the Characteristic Value of Transport Services," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    3. Xueyan Li & Jing Li, 2021. "A freight transport price optimization model with multi bounded-rational customers," Transportation, Springer, vol. 48(1), pages 477-504, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xue-yan & Li, Xue-mei & Yang, Lingrun & Li, Jing, 2018. "Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 77-92.
    2. Xueyan Li & Jing Li, 2021. "A freight transport price optimization model with multi bounded-rational customers," Transportation, Springer, vol. 48(1), pages 477-504, February.
    3. Ji, Xiangfeng & Chu, Yanyu, 2020. "A target-oriented bi-attribute user equilibrium model with travelers’ perception errors on the tolled traffic network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    4. Kemel, Emmanuel & Paraschiv, Corina, 2013. "Prospect Theory for joint time and money consequences in risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 81-95.
    5. Xiangfeng Ji & Xiaoyu Ao, 2021. "Travelers’ Bi-Attribute Decision Making on the Risky Mode Choice with Flow-Dependent Salience Theory," Sustainability, MDPI, vol. 13(7), pages 1-24, April.
    6. Xie, Chi & Liu, Zugang, 2014. "On the stochastic network equilibrium with heterogeneous choice inertia," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 90-109.
    7. Giselle Moraes Ramos & Winnie Daamen & Serge Hoogendoorn, 2014. "A State-of-the-Art Review: Developments in Utility Theory, Prospect Theory and Regret Theory to Investigate Travellers' Behaviour in Situations Involving Travel Time Uncertainty," Transport Reviews, Taylor & Francis Journals, vol. 34(1), pages 46-67, January.
    8. Xinming Zang & Zhenqi Guo & Jingai Ma & Yongguang Zhong & Xiangfeng Ji, 2021. "Target-Oriented User Equilibrium Considering Travel Time, Late Arrival Penalty, and Travel Cost on the Stochastic Tolled Traffic Network," Sustainability, MDPI, vol. 13(17), pages 1-22, September.
    9. Stefano DellaVigna, 2009. "Psychology and Economics: Evidence from the Field," Journal of Economic Literature, American Economic Association, vol. 47(2), pages 315-372, June.
    10. Zhou, Yuyang & Wang, Peiyu & Zheng, Shuyan & Zhao, Minhe & Lam, William H.K. & Chen, Anthony & Sze, N.N. & Chen, Yanyan, 2024. "Modeling dynamic travel mode choices using cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    11. Mohammed Abdellaoui & Horst Zank, 2023. "Source and rank-dependent utility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(4), pages 949-981, May.
    12. Basieva, Irina & Khrennikova, Polina & Pothos, Emmanuel M. & Asano, Masanari & Khrennikov, Andrei, 2018. "Quantum-like model of subjective expected utility," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 150-162.
    13. Gul, Faruk & Pesendorfer, Wolfgang, 2015. "Hurwicz expected utility and subjective sources," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 465-488.
    14. Tian, Ye & Li, Yudi & Sun, Jian, 2022. "Stick or carrot for traffic demand management? Evidence from experimental economics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 235-254.
    15. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    16. Enrico G. De Giorgi & David B. Brown & Melvyn Sim, 2010. "Dual representation of choice and aspirational preferences," University of St. Gallen Department of Economics working paper series 2010 2010-07, Department of Economics, University of St. Gallen.
    17. Wakker, Peter P. & Zank, Horst, 2002. "A simple preference foundation of cumulative prospect theory with power utility," European Economic Review, Elsevier, vol. 46(7), pages 1253-1271, July.
    18. repec:cup:judgdm:v:16:y:2021:i:6:p:1324-1369 is not listed on IDEAS
    19. Harin, Alexander, 2019. "Forbidden zones for the expectations of measurement data and problems of behavioral economics," MPRA Paper 91368, University Library of Munich, Germany.
    20. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    21. Dorian Jullien & Alexandre Truc, 2024. "Towards a History of Behavioral and Experimental Economics in France," GREDEG Working Papers 2024-23, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:469:y:2017:i:c:p:405-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.