IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v32y1998i2p99-114.html
   My bibliography  Save this article

High occupancy vehicle lanes: Not always more effective than general purpose lanes

Author

Listed:
  • Dahlgren, Joy

Abstract

The success of a high occupancy vehicle lane in motivating people to shift to carpools and buses depends on maintaining a travel time differential between it and the adjacent general purpose lanes. This differential, in turn, depends on the level of continuing delay on the general purpose lanes. Therefore, it is clear that a high occupancy vehicle lane that will motivate people to shift to high occupancy vehicles will not eliminate congestion. Consequently, it is not clear that constructing a high occupancy vehicle lane will necessarily reduce delay more than construction of a general purpose lane. The objective of this research is to determine the circumstances in which this would be the case. The hypothesis is that such circumstances would be quite limited, and this proves to be the case. The intended benefits of high occupancy lanes are defined as reduced person-delay and reduced emissions. A model is developed to calculate these benefits for four alternatives: add a high occupancy vehicle lane, add a general purpose lane, convert an existing lane to a high occupancy vehicle lane, and do nothing. The model takes into account the initial conditions, the dynamic nature of the travel time differential between the high occupancy vehicle lane and other lanes, and the uncertainty regarding the extent to which people will shift modes. It combines queueing theory and mode choice theory and provides a robust method for comparing alternatives using a small amount of easily observed data. Application of the model in typical situations shows that with initial delays on the order of 15 min or more, adding a high occupancy vehicle lane would provide substantial reductions in delay and some reduction in emissions. However, in a wide range of such situations, adding a general purpose lane would be even more effective. Only if the initial delay is long and the initial proportion of high occupancy vehicles falls in a rather narrow range, would an added high occupancy vehicle lane be more effective. The proportion of high occupancy vehicles must be such that it allows good utilization of the high occupancy vehicle lane while maintaining a sufficient travel time differential to motivate a shift to buses or carpools. Adding a high occupancy vehicle lane to a three lane freeway will be more effective than adding a general purpose lane only if the initial maximum delay is on the order of 35 min or more and the proportion of high occupancy vehicles is on the order of 20%. Federal policies encourage construction of high occupancy vehicle lanes and restrict funding for general purpose lanes in areas that have not attained air quality standards. The findings of this research suggest a need to reconsider these policies.

Suggested Citation

  • Dahlgren, Joy, 1998. "High occupancy vehicle lanes: Not always more effective than general purpose lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(2), pages 99-114, February.
  • Handle: RePEc:eee:transa:v:32:y:1998:i:2:p:99-114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(97)00021-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfa, Attahiru Sule, 1989. "Departure rate and route assignment of commuter traffic during peak period," Transportation Research Part B: Methodological, Elsevier, vol. 23(5), pages 337-344, October.
    2. Chris Hendrickson & George Kocur, 1981. "Schedule Delay and Departure Time Decisions in a Deterministic Model," Transportation Science, INFORMS, vol. 15(1), pages 62-77, February.
    3. G. F. Newell, 1988. "Traffic Flow for the Morning Commute," Transportation Science, INFORMS, vol. 22(1), pages 47-58, February.
    4. Hani S. Mahmassani & Gang-Len Chang, 1987. "On Boundedly Rational User Equilibrium in Transportation Systems," Transportation Science, INFORMS, vol. 21(2), pages 89-99, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfa, Attahiru Sule & Chen, Mingyuan, 1995. "Temporal distribution of public transport demand during the peak period," European Journal of Operational Research, Elsevier, vol. 83(1), pages 137-153, May.
    2. van Ackere, Ann & Larsen, Erik R., 2004. "Self-organising behaviour in the presence of negative externalities: A conceptual model of commuter choice," European Journal of Operational Research, Elsevier, vol. 157(2), pages 501-513, September.
    3. Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
    4. Sang Nguyen & Stefano Pallottino & Federico Malucelli, 2001. "A Modeling Framework for Passenger Assignment on a Transport Network with Timetables," Transportation Science, INFORMS, vol. 35(3), pages 238-249, August.
    5. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    6. Khattak, Asad J. & De Palma, André, 1997. "The impact of adverse weather conditions on the propensity to change travel decisions: A survey of Brussels commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 181-203, May.
    7. Li, Chuan-Yao & Huang, Hai-Jun, 2018. "User equilibrium of a single-entry traffic corridor with continuous scheduling preference," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 21-38.
    8. Emmerink, R., 1993. "Effects of information in road transport networks with recurrent congestion," Serie Research Memoranda 0065, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    9. Fu, Haoran & Akamatsu, Takashi & Satsukawa, Koki & Wada, Kentaro, 2022. "Dynamic traffic assignment in a corridor network: Optimum versus equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 218-246.
    10. Li, Chuan-Yao & Huang, Hai-Jun, 2017. "Morning commute in a single-entry traffic corridor with early and late arrivals," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 23-49.
    11. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    12. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    13. Akamatsu, Takashi & Wada, Kentaro & Hayashi, Shunsuke, 2015. "The corridor problem with discrete multiple bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 808-829.
    14. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    15. Rong-Chang Jou & David A. Hensher & Yu-Hsin Liu & Ching-Shu Chiu, 2010. "Urban Commuters’ Mode-switching Behaviour in Taipai, with an Application of the Bounded Rationality Principle," Urban Studies, Urban Studies Journal Limited, vol. 47(3), pages 650-665, March.
    16. Erik T. Verhoef, 1998. "An Integrated Dynamic Model of Road Traffic Congestion based on Simple Car-Following Theory," Tinbergen Institute Discussion Papers 98-030/3, Tinbergen Institute.
    17. Bogyrbayeva, Aigerim & Kwon, Changhyun, 2021. "Pessimistic evasive flow capturing problems," European Journal of Operational Research, Elsevier, vol. 293(1), pages 133-148.
    18. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    19. Ran, Bin & Hall, Randolph & Boyce, David E., 1995. "A Link-Based Variational Inequality Model for Dynamic Departure Time/Route Choice," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt84t190b3, Institute of Transportation Studies, UC Berkeley.
    20. Zhang, Ding & Nagurney, Anna & Wu, Jiahao, 2001. "On the equivalence between stationary link flow patterns and traffic network equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 731-748, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:32:y:1998:i:2:p:99-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.