Modeling consideration sets and brand choice using artificial neural networks
Author
Abstract
(This abstract was borrowed from another version of this item.)
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Vroomen, B.L.K. & Franses, Ph.H.B.F. & van Nierop, J.E.M., 2001. "Modeling Consideration Sets and Brand Choice Using Artificial Neural Networks," ERIM Report Series Research in Management ERS-2001-10-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
References listed on IDEAS
- Dasgupta, Chanda Ghose & Dispensa, Gary S. & Ghose, Sanjoy, 1994. "Comparing the predictive performance of a neural network model with some traditional market response models," International Journal of Forecasting, Elsevier, vol. 10(2), pages 235-244, September.
- Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
- A. Stewart Fotheringham, 1988. "Note—Consumer Store Choice and Choice Set Definition," Marketing Science, INFORMS, vol. 7(3), pages 299-310.
- Hruschka, Harald, 1993. "Determining market response functions by neural network modeling: A comparison to econometric techniques," European Journal of Operational Research, Elsevier, vol. 66(1), pages 27-35, April.
- Hausman, Jerry A & Wise, David A, 1978.
"A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences,"
Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
- J. A. Hausman & D. A. Wise, 1976. "A Conditional Profit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Working papers 173, Massachusetts Institute of Technology (MIT), Department of Economics.
- Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
- Patricia M. West & Patrick L. Brockett & Linda L. Golden, 1997. "A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice," Marketing Science, INFORMS, vol. 16(4), pages 370-391.
- Chintagunta, Pradeep K & Prasad, Alok R, 1998. "An Empirical Investigation of the "Dynamic McFadden" Model of Purchase Timing and Brand Choice: Implications for Market Structure," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 2-12, January.
- Chiang, Jeongwen & Chib, Siddhartha & Narasimhan, Chakravarthi, 1998. "Markov chain Monte Carlo and models of consideration set and parameter heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 223-248, November.
- Yves Bentz & Dwight Merunka, 2000. "Neural networks and the multinomial logit for brand choice modelling: a hybrid approach," Post-Print hal-01822273, HAL.
- Franses, Philip Hans & Draisma, Gerrit, 1997. "Recognizing changing seasonal patterns using artificial neural networks," Journal of Econometrics, Elsevier, vol. 81(1), pages 273-280, November.
- Manrai, Ajay K. & Andrews, Rick L., 1998. "Two-stage discrete choice models for scanner panel data: An assessment of process and assumptions," European Journal of Operational Research, Elsevier, vol. 111(2), pages 193-215, December.
- Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Y Hayashi & M-H Hsieh & R Setiono, 2009. "Predicting consumer preference for fast-food franchises: a data mining approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1221-1229, September.
- Manash Pratim Kashyap, 2011. "Brand Categorization Process for Staple Goods: Comparison between Rural and Urban Customers," Information Management and Business Review, AMH International, vol. 2(4), pages 162-172.
- Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
- Potharst, R. & van Rijthoven, M. & van Wezel, M.C., 2005. "Modeling brand choice using boosted and stacked neural networks," Econometric Institute Research Papers EI 2005-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
- Potharst, R. & van Rijthoven, M. & van Wezel, M.C., 2005. "Modeling brand choice using boosted and stacked neural networks," Econometric Institute Research Papers EI 2005-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Hruschka, Harald & Fettes, Werner & Probst, Markus, 2004. "An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications," European Journal of Operational Research, Elsevier, vol. 159(1), pages 166-180, November.
- Andrews, Rick L. & Manrai, Ajay K., 1998. "Feature-based elimination: Model and empirical comparison," European Journal of Operational Research, Elsevier, vol. 111(2), pages 248-267, December.
- Shao, Wei & Lye, Ashley & Rundle-Thiele, Sharyn, 2009. "Different strokes for different folks: A method to accommodate decision -making heterogeneity," Journal of Retailing and Consumer Services, Elsevier, vol. 16(6), pages 495-501.
- Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
- Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.
- Steven T. Berry & Philip A. Haile, 2009.
"Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers,"
NBER Working Papers
15276, National Bureau of Economic Research, Inc.
- Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," Cowles Foundation Discussion Papers 1718, Cowles Foundation for Research in Economics, Yale University, revised Mar 2010.
- Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
- Baltas, George & Doyle, Peter, 2001. "Random utility models in marketing research: a survey," Journal of Business Research, Elsevier, vol. 51(2), pages 115-125, February.
- LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, September.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, October.
- Gallego, Guillermo & Li, Anran & Truong, Van-Anh & Wang, Xinshang, 2020. "Approximation algorithms for product framing and pricing," LSE Research Online Documents on Economics 101983, London School of Economics and Political Science, LSE Library.
- Robert Kapłon, 2006. "A retrospective review of categorical data analysis – theory and marketing practice," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(1), pages 55-72.
- Eisinga, R. & Franses, Ph.H.B.F. & van Dijk, D.J.C., 1997. "Timing of Vote Decision in First and Second Order Dutch Elections 1978-1995: Evidence from Artificial Neural Networks," Econometric Institute Research Papers EI 9733/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Mohamed Lachaab & Asim Ansari & Kamel Jedidi & Abdelwahed Trabelsi, 2006. "Modeling preference evolution in discrete choice models: A Bayesian state-space approach," Quantitative Marketing and Economics (QME), Springer, vol. 4(1), pages 57-81, March.
- Harald Hruschka, 2007. "Using a heterogeneous multinomial probit model with a neural net extension to model brand choice," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 113-127.
- Joseph Pancras, 2010. "A Framework to Determine the Value of Consumer Consideration Set Information for Firm Pricing Strategies," Computational Economics, Springer;Society for Computational Economics, vol. 35(3), pages 269-300, March.
- Qi, Min & Zhang, Guoqiang Peter, 2001. "An investigation of model selection criteria for neural network time series forecasting," European Journal of Operational Research, Elsevier, vol. 132(3), pages 666-680, August.
- Steven M. Shugan, 2006. "Editorial: Errors in the Variables, Unobserved Heterogeneity, and Other Ways of Hiding Statistical Error," Marketing Science, INFORMS, vol. 25(3), pages 203-216, 05-06.
More about this item
JEL classification:
- C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
- M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:154:y:2004:i:1:p:206-217. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.