IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1911.html
   My bibliography  Save this paper

Modeling brand choice using boosted and stacked neural networks

Author

Listed:
  • Potharst, R.
  • van Rijthoven, M.
  • van Wezel, M.C.

Abstract

The brand choice problem in marketing has recently been addressed with methods from computational intelligence such as neural networks. Another class of methods from computational intelligence, the so-called ensemble methods such as boosting and stacking have never been applied to the brand choice problem, as far as we know. Ensemble methods generate a number of models for the same problem using any base method and combine the outcomes of these different models. It is well known that in many cases the predictive performance of ensemble methods significantly exceeds the predictive performance of the their base methods. In this report we use boosting and stacking of neural networks and apply this to a scanner dataset that is a benchmark dataset in the marketing literature. Using these methods, we find a significant improvement in predictive performance on this dataset.

Suggested Citation

  • Potharst, R. & van Rijthoven, M. & van Wezel, M.C., 2005. "Modeling brand choice using boosted and stacked neural networks," Econometric Institute Research Papers EI 2005-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1911
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1911/ei200505.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Michael Y. & Tsoukalas, Christos, 2003. "Explaining consumer choice through neural networks: The stacked generalization approach," European Journal of Operational Research, Elsevier, vol. 146(3), pages 650-660, May.
    2. Franses,Philip Hans & Paap,Richard, 2010. "Quantitative Models in Marketing Research," Cambridge Books, Cambridge University Press, number 9780521143653, October.
    3. Hruschka, Harald, 1993. "Determining market response functions by neural network modeling: A comparison to econometric techniques," European Journal of Operational Research, Elsevier, vol. 66(1), pages 27-35, April.
    4. Vroomen, Bjorn & Hans Franses, Philip & van Nierop, Erjen, 2004. "Modeling consideration sets and brand choice using artificial neural networks," European Journal of Operational Research, Elsevier, vol. 154(1), pages 206-217, April.
    5. Chintagunta, Pradeep K & Prasad, Alok R, 1998. "An Empirical Investigation of the "Dynamic McFadden" Model of Purchase Timing and Brand Choice: Implications for Market Structure," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 2-12, January.
    6. Patricia M. West & Patrick L. Brockett & Linda L. Golden, 1997. "A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice," Marketing Science, INFORMS, vol. 16(4), pages 370-391.
    7. Dasgupta, Chanda Ghose & Dispensa, Gary S. & Ghose, Sanjoy, 1994. "Comparing the predictive performance of a neural network model with some traditional market response models," International Journal of Forecasting, Elsevier, vol. 10(2), pages 235-244, September.
    8. Potharst, R. & Kaymak, U. & Pijls, W.H.L.M., 2001. "Neural Networks for Target Selection in Direct Marketing," ERIM Report Series Research in Management ERS-2001-14-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vroomen, Bjorn & Hans Franses, Philip & van Nierop, Erjen, 2004. "Modeling consideration sets and brand choice using artificial neural networks," European Journal of Operational Research, Elsevier, vol. 154(1), pages 206-217, April.
    2. Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
    3. Bioch, J.C. & Groenen, P.J.F. & Nalbantov, G.I., 2005. "Solving and interpreting binary classification problems in marketing with SVMs," Econometric Institute Research Papers EI 2005-46, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. van Wezel, M.C. & Potharst, R., 2005. "Improved customer choice predictions using ensemble methods," Econometric Institute Research Papers EI 2005-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    6. van Wezel, Michiel & Potharst, Rob, 2007. "Improved customer choice predictions using ensemble methods," European Journal of Operational Research, Elsevier, vol. 181(1), pages 436-452, August.
    7. Hu, Michael Y. & Tsoukalas, Christos, 2003. "Explaining consumer choice through neural networks: The stacked generalization approach," European Journal of Operational Research, Elsevier, vol. 146(3), pages 650-660, May.
    8. Dennis Fok & Richard Paap, 2009. "Modeling category‐level purchase timing with brand‐level marketing variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(3), pages 469-489, April.
    9. Bergtold, Jason S. & Taylor, Daniel B. & Bosch, Darrell J., 2003. "Networking Your Way to a Better Prediction: Effectively Modeling Contingent Valuation Survey Data," 2003 Annual meeting, July 27-30, Montreal, Canada 22152, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    11. Polo, Yolanda & Sese, F. Javier & Verhoef, Peter C., 2011. "The Effect of Pricing and Advertising on Customer Retention in a Liberalizing Market," Journal of Interactive Marketing, Elsevier, vol. 25(4), pages 201-214.
    12. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
    13. Edwin Van Gameren & Michiel Ras & Evelien Eggink & Ingrid Ooms, 2005. "The demand for housing services in the Netherlands," ERSA conference papers ersa05p327, European Regional Science Association.
    14. Saiful Anwar & A.M Hasan Ali, 2018. "ANNs-BASED EARLY WARNING SYSTEM FOR INDONESIAN ISLAMIC BANKS," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 20(3), pages 325-342, January.
    15. Franses, Philip Hans, 2006. "Forecasting in Marketing," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 18, pages 983-1012, Elsevier.
    16. Shao, Wei & Lye, Ashley & Rundle-Thiele, Sharyn, 2009. "Different strokes for different folks: A method to accommodate decision -making heterogeneity," Journal of Retailing and Consumer Services, Elsevier, vol. 16(6), pages 495-501.
    17. Olumide Emmanuel Oluyisola & Fabio Sgarbossa & Jan Ola Strandhagen, 2020. "Smart Production Planning and Control: Concept, Use-Cases and Sustainability Implications," Sustainability, MDPI, vol. 12(9), pages 1-29, May.
    18. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    19. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.
    20. Clarijs, P. & Hogeling, B. & Franses, Ph.H.B.F. & Heij, C., 2007. "Evaluation of survey effects in pre-election polls," Econometric Institute Research Papers EI 2007-50, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.