IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v159y2004i1p166-180.html
   My bibliography  Save this article

An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications

Author

Listed:
  • Hruschka, Harald
  • Fettes, Werner
  • Probst, Markus

Abstract

No abstract is available for this item.

Suggested Citation

  • Hruschka, Harald & Fettes, Werner & Probst, Markus, 2004. "An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications," European Journal of Operational Research, Elsevier, vol. 159(1), pages 166-180, November.
  • Handle: RePEc:eee:ejores:v:159:y:2004:i:1:p:166-180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(03)00410-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abe, Makoto, 1999. "A Generalized Additive Model for Discrete-Choice Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 271-284, July.
    2. McFadden, Daniel, 1980. "Econometric Models for Probabilistic Choice among Products," The Journal of Business, University of Chicago Press, vol. 53(3), pages 13-29, July.
    3. Patricia M. West & Patrick L. Brockett & Linda L. Golden, 1997. "A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice," Marketing Science, INFORMS, vol. 16(4), pages 370-391.
    4. Marcel L. Corstjens & David A. Gautschi, 1983. "Formal Choice Models in Marketing," Marketing Science, INFORMS, vol. 2(1), pages 19-56.
    5. Yves Bentz & Dwight Merunka, 2000. "Neural networks and the multinomial logit for brand choice modelling: a hybrid approach," Post-Print hal-01822273, HAL.
    6. Pradeep K. Chintagunta, 1992. "Estimating a Multinomial Probit Model of Brand Choice Using the Method of Simulated Moments," Marketing Science, INFORMS, vol. 11(4), pages 386-407.
    7. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    8. Kalyanaram, Gurumurthy & Little, John D C, 1994. "An Empirical Analysis of Latitude of Price Acceptance in Consumer Package Goods," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 21(3), pages 408-418, December.
    9. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    10. Kwangpil Chang & S. Siddarth & Charles B. Weinberg, 1999. "The Impact of Heterogeneity in Purchase Timing and Price Responsiveness on Estimates of Sticker Shock Effects," Marketing Science, INFORMS, vol. 18(2), pages 178-192.
    11. Thomas S. Shively & Greg M. Allenby & Robert Kohn, 2000. "A Nonparametric Approach to Identifying Latent Relationships in Hierarchical Models," Marketing Science, INFORMS, vol. 19(2), pages 149-162, November.
    12. Allenby, Greg M & Lenk, Peter J, 1995. "Reassessing Brand Loyalty, Price Sensitivity, and Merchandising Effects on Consumer Brand Choice," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 281-289, July.
    13. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    14. James H. Pedrick & Fred S. Zufryden, 1991. "Evaluating the Impact of Advertising Media Plans: A Model of Consumer Purchase Dynamics Using Single-Source Data," Marketing Science, INFORMS, vol. 10(2), pages 111-130.
    15. Lakshman Krishnamurthi & S. P. Raj, 1988. "A Model of Brand Choice and Purchase Quantity Price Sensitivities," Marketing Science, INFORMS, vol. 7(1), pages 1-20.
    16. David R. Bell & James M. Lattin, 2000. "Looking for Loss Aversion in Scanner Panel Data: The Confounding Effect of Price Response Heterogeneity," Marketing Science, INFORMS, vol. 19(2), pages 185-200, May.
    17. Winer, Russell S, 1986. "A Reference Price Model of Brand Choice for Frequently Purchased Products," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 13(2), pages 250-256, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arkoudi, Ioanna & Krueger, Rico & Azevedo, Carlos Lima & Pereira, Francisco C., 2023. "Combining discrete choice models and neural networks through embeddings: Formulation, interpretability and performance," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    2. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    3. Lahoz, Lorena Torres & Pereira, Francisco Camara & Sfeir, Georges & Arkoudi, Ioanna & Monteiro, Mayara Moraes & Azevedo, Carlos Lima, 2023. "Attitudes and Latent Class Choice Models using Machine Learning," Journal of choice modelling, Elsevier, vol. 49(C).
    4. Harald Hruschka, 2007. "Using a heterogeneous multinomial probit model with a neural net extension to model brand choice," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 113-127.
    5. Yafei Han & Francisco Camara Pereira & Moshe Ben-Akiva & Christopher Zegras, 2020. "A Neural-embedded Choice Model: TasteNet-MNL Modeling Taste Heterogeneity with Flexibility and Interpretability," Papers 2002.00922, arXiv.org, revised Jul 2022.
    6. Lorena Torres Lahoz & Francisco Camara Pereira & Georges Sfeir & Ioanna Arkoudi & Mayara Moraes Monteiro & Carlos Lima Azevedo, 2023. "Attitudes and Latent Class Choice Models using Machine learning," Papers 2302.09871, arXiv.org.
    7. Lang, Stefan & Steiner, Winfried J. & Weber, Anett & Wechselberger, Peter, 2015. "Accommodating heterogeneity and nonlinearity in price effects for predicting brand sales and profits," European Journal of Operational Research, Elsevier, vol. 246(1), pages 232-241.
    8. Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
    9. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harald Hruschka, 2007. "Using a heterogeneous multinomial probit model with a neural net extension to model brand choice," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 113-127.
    2. Baltas, George & Doyle, Peter, 2001. "Random utility models in marketing research: a survey," Journal of Business Research, Elsevier, vol. 51(2), pages 115-125, February.
    3. Guhl, Daniel & Baumgartner, Bernhard & Kneib, Thomas & Steiner, Winfried J., 2018. "Estimating time-varying parameters in brand choice models: A semiparametric approach," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 394-414.
    4. Moon, Sangkil & Voss, Glenn, 2009. "How do price range shoppers differ from reference price point shoppers?," Journal of Business Research, Elsevier, vol. 62(1), pages 31-38, January.
    5. Nobuhiko Terui & Wirawan Dony Dahana, 2006. "Research Note—Estimating Heterogeneous Price Thresholds," Marketing Science, INFORMS, vol. 25(4), pages 384-391, 07-08.
    6. van Oest, Rutger, 2013. "Why are Consumers Less Loss Averse in Internal than External Reference Prices?," Journal of Retailing, Elsevier, vol. 89(1), pages 62-71.
    7. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.
    8. Necati Tereyağoğlu & Peter S. Fader & Senthil Veeraraghavan, 2018. "Multiattribute Loss Aversion and Reference Dependence: Evidence from the Performing Arts Industry," Management Science, INFORMS, vol. 64(1), pages 421-436, January.
    9. repec:hum:wpaper:sfb649dp2005-057 is not listed on IDEAS
    10. Kopalle, Praveen K. & Kannan, P.K. & Boldt, Lin Bao & Arora, Neeraj, 2012. "The impact of household level heterogeneity in reference price effects on optimal retailer pricing policies," Journal of Retailing, Elsevier, vol. 88(1), pages 102-114.
    11. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.
    12. Neumann, Nico & Böckenholt, Ulf, 2014. "A Meta-analysis of Loss Aversion in Product Choice," Journal of Retailing, Elsevier, vol. 90(2), pages 182-197.
    13. Boztuğ, Yasemin & Hildebrandt, Lutz, 2005. "An empirical test of theories of price valuation using a semiparametric approach, reference prices, and accounting for heterogeneity," SFB 649 Discussion Papers 2005-057, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Murthi, B.P.S. & Rao, Ram C., 2012. "Price Awareness and Consumers’ Use of Deals in Brand Choice," Journal of Retailing, Elsevier, vol. 88(1), pages 34-46.
    15. David R. Bell & James M. Lattin, 2000. "Looking for Loss Aversion in Scanner Panel Data: The Confounding Effect of Price Response Heterogeneity," Marketing Science, INFORMS, vol. 19(2), pages 185-200, May.
    16. Makoto Abe & Yasemin Boztug & Lutz Hildebrandt, 2004. "Investigating the competitive assumption of Multinomial Logit models of brand choice by nonparametric modeling," Computational Statistics, Springer, vol. 19(4), pages 635-657, December.
    17. Robert Slonim & Ellen Garbarino, 2009. "Similarities and differences between stockpiling and reference effects," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 30(6), pages 351-371.
    18. Yafei Han & Francisco Camara Pereira & Moshe Ben-Akiva & Christopher Zegras, 2020. "A Neural-embedded Choice Model: TasteNet-MNL Modeling Taste Heterogeneity with Flexibility and Interpretability," Papers 2002.00922, arXiv.org, revised Jul 2022.
    19. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    20. Nicolau, Juan L., 2011. "Differentiated price loss aversion in destination choice: The effect of tourists’ cultural interest," Tourism Management, Elsevier, vol. 32(5), pages 1186-1195.
    21. Vincenzina Caputo & Jayson L Lusk & Rodolfo M Nayga, 2020. "Am I Getting a Good Deal? Reference‐DependentDecision Making When the Reference Price Is Uncertain," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 132-153, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:159:y:2004:i:1:p:166-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.