IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i14p2510-2519.html
   My bibliography  Save this article

Uncertain programming models for portfolio selection with uncertain returns

Author

Listed:
  • Bo Zhang
  • Jin Peng
  • Shengguo Li

Abstract

In an indeterminacy economic environment, experts’ knowledge about the returns of securities consists of much uncertainty instead of randomness. This paper discusses portfolio selection problem in uncertain environment in which security returns cannot be well reflected by historical data, but can be evaluated by the experts. In the paper, returns of securities are assumed to be given by uncertain variables. According to various decision criteria, the portfolio selection problem in uncertain environment is formulated as expected-variance-chance model and chance-expected-variance model by using the uncertainty programming. Within the framework of uncertainty theory, for the convenience of solving the models, some crisp equivalents are discussed under different conditions. In addition, a hybrid intelligent algorithm is designed in the paper to provide a general method for solving the new models in general cases. At last, two numerical examples are provided to show the performance and applications of the models and algorithm.

Suggested Citation

  • Bo Zhang & Jin Peng & Shengguo Li, 2015. "Uncertain programming models for portfolio selection with uncertain returns," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2510-2519, October.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:14:p:2510-2519
    DOI: 10.1080/00207721.2013.871366
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.871366
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.871366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crama, Y. & Schyns, M., 2003. "Simulated annealing for complex portfolio selection problems," European Journal of Operational Research, Elsevier, vol. 150(3), pages 546-571, November.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Li, Susan X. & Huang, Zhimin, 1996. "Determination of the portfolio selection for a property-liability insurance company," European Journal of Operational Research, Elsevier, vol. 88(2), pages 257-268, January.
    4. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    5. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    6. Qiulin Guo & Jianzhong Li & Caineng Zou & Yujuan Guo & Wei Yan, 2012. "A class of multi-period semi-variance portfolio for petroleum exploration and development," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(10), pages 1883-1890.
    7. Lin, Chang-Chun & Liu, Yi-Ting, 2008. "Genetic algorithms for portfolio selection problems with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 185(1), pages 393-404, February.
    8. Wei Yan, 2012. "Continuous-time safety-first portfolio selection with jump-diffusion processes," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(4), pages 622-628.
    9. N.C. Suganya & G.A. Pai, 2012. "Wavelet evolutionary network for complex-constrained portfolio rebalancing," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(7), pages 1367-1385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Carlos Pérez-Mesa & Francisco Javier Pérez-Mesa & Juan José Tapia-León & Diego Luis Valera, 2022. "Scheduling vegetable sales to supermarkets in Europe: The tomato case," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(11), pages 403-412.
    2. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    3. Adam Borovička, 2022. "Stock portfolio selection under unstable uncertainty via fuzzy mean-semivariance model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 595-616, June.
    4. Pérez-Mesa, Juan Carlos & Pérez-Mesa, Fº Javier & Tapia-León, Juan José & Valera-Martínez, Diego, 2022. "Scheduling vegetable sales to supermarkets in Europe: The tomato case," MPRA Paper 119883, University Library of Munich, Germany.
    5. Oleg Malafeyev & Achal Awasthi, 2017. "Dynamic optimization of a portfolio," Papers 1712.00585, arXiv.org.
    6. Li, Bo & Lu, Ziqiang, 2023. "Uncertain random enhanced index tracking for portfolio selection with parameter estimation and hypothesis test," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    7. Xiaona Li & Xiaosheng Wang & Haiying Guo & Weimin Ma, 2020. "Multi-Water Resources Optimal Allocation Based on Multi-Objective Uncertain Chance-Constrained Programming Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4881-4899, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruey-Chyn Tsaur, 2015. "Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 438-450, February.
    2. Lin Chen & Jin Peng & Bo Zhang & Isnaini Rosyida, 2017. "Diversified models for portfolio selection based on uncertain semivariance," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(3), pages 637-648, February.
    3. Chen, Wei & Zhang, Wei-Guo, 2010. "The admissible portfolio selection problem with transaction costs and an improved PSO algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2070-2076.
    4. Massol, Olivier & Banal-Estañol, Albert, 2014. "Export diversification through resource-based industrialization: The case of natural gas," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1067-1082.
    5. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    6. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    7. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    8. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    9. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    10. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    11. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    12. Mario Alejandro Acosta R., 2014. "Las acciones como activo de reserva para el Banco de la República," Documentos CEDE 11004, Universidad de los Andes, Facultad de Economía, CEDE.
    13. Witte, Björn-Christopher, 2012. "Fund managers - Why the best might be the worst: On the evolutionary vigor of risk-seeking behavior," Economics Discussion Papers 2012-20, Kiel Institute for the World Economy (IfW Kiel).
    14. Huang, Xiaoxia, 2008. "Portfolio selection with a new definition of risk," European Journal of Operational Research, Elsevier, vol. 186(1), pages 351-357, April.
    15. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    16. Bernard, Carole & Chen, Jit Seng & Vanduffel, Steven, 2015. "Rationalizing investors’ choices," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 10-23.
    17. Briec, Walter & Kerstens, Kristiaan, 2010. "Portfolio selection in multidimensional general and partial moment space," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 636-656, April.
    18. Walter Murray & Howard Shek, 2012. "A local relaxation method for the cardinality constrained portfolio optimization problem," Computational Optimization and Applications, Springer, vol. 53(3), pages 681-709, December.
    19. Jian Yang, 2015. "Game-theoretic Modeling of Players' Ambiguities on External Factors," Papers 1510.06812, arXiv.org, revised Apr 2017.
    20. Kerstens, Kristiaan & Mounir, Amine & Van de Woestyne, Ignace, 2011. "Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function," European Journal of Operational Research, Elsevier, vol. 210(1), pages 81-94, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:14:p:2510-2519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.