IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v39y2023i2p691-719.html
   My bibliography  Save this article

Beating the market with a bad predictive model

Author

Listed:
  • Hubáček, Ondřej
  • Šír, Gustav

Abstract

It is a common misconception that in order to make consistent profits as a trader, one needs to possess some extra information leading to an asset value estimation that is more accurate than that reflected by the current market price. While the idea makes intuitive sense and is also well substantiated by the widely popular Kelly criterion, we prove that it is generally possible to make systematic profits with a completely inferior price-predicting model. The key idea is to alter the training objective of the predictive models to explicitly decorrelate them from the market. By doing so, we can exploit inconspicuous biases in the market maker’s pricing, and profit from the inherent advantage of the market taker. We introduce the problem setting throughout the diverse domains of stock trading and sports betting to provide insights into the common underlying properties of profitable predictive models, their connections to standard portfolio optimization strategies, and the commonly overlooked advantage of the market taker. Consequently, we prove the desirability of the decorrelation objective across common market distributions, translate the concept into a practical machine learning setting, and demonstrate its viability with real-world market data.

Suggested Citation

  • Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
  • Handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:691-719
    DOI: 10.1016/j.ijforecast.2022.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207022000292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2022.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baker, Rose D. & McHale, Ian G., 2013. "Forecasting exact scores in National Football League games," International Journal of Forecasting, Elsevier, vol. 29(1), pages 122-130.
    2. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630, April.
    3. Michaud, Richard O. & Michaud, Robert O., 2008. "Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation," OUP Catalogue, Oxford University Press, edition 2, number 9780195331912.
    4. Paul A. Samuelson, 2011. "Why We Should Not Make Mean Log of Wealth Big Though Years to Act Are Long," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 34, pages 491-493, World Scientific Publishing Co. Pte. Ltd..
    5. L. C. MacLean & W. T. Ziemba & G. Blazenko, 1992. "Growth Versus Security in Dynamic Investment Analysis," Management Science, INFORMS, vol. 38(11), pages 1562-1585, November.
    6. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V., 2010. "Alternative methods of predicting competitive events: An application in horserace betting markets," International Journal of Forecasting, Elsevier, vol. 26(3), pages 518-536, July.
    7. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    8. Boshnakov, Georgi & Kharrat, Tarak & McHale, Ian G., 2017. "A bivariate Weibull count model for forecasting association football scores," International Journal of Forecasting, Elsevier, vol. 33(2), pages 458-466.
    9. Wunderlich, Fabian & Memmert, Daniel, 2020. "Are betting returns a useful measure of accuracy in (sports) forecasting?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 713-722.
    10. Enzo Busseti & Ernest K. Ryu & Stephen Boyd, 2016. "Risk-Constrained Kelly Gambling," Papers 1603.06183, arXiv.org.
    11. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630.
    12. Matej Uhr'in & Gustav v{S}ourek & Ondv{r}ej Hub'av{c}ek & Filip v{Z}elezn'y, 2021. "Optimal sports betting strategies in practice: an experimental review," Papers 2107.08827, arXiv.org.
    13. Peeters, Thomas, 2018. "Testing the Wisdom of Crowds in the field: Transfermarkt valuations and international soccer results," International Journal of Forecasting, Elsevier, vol. 34(1), pages 17-29.
    14. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    15. Leonard C. MacLean & Edward O. Thorp & Yonggan Zhao & William T. Ziemba, 2011. "Medium Term Simulations of The Full Kelly and Fractional Kelly Investment Strategies," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 38, pages 543-561, World Scientific Publishing Co. Pte. Ltd..
    16. Forrest, David & Goddard, John & Simmons, Robert, 2005. "Odds-setters as forecasters: The case of English football," International Journal of Forecasting, Elsevier, vol. 21(3), pages 551-564.
    17. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    18. Franck, Egon & Verbeek, Erwin & Nüesch, Stephan, 2010. "Prediction accuracy of different market structures -- bookmakers versus a betting exchange," International Journal of Forecasting, Elsevier, vol. 26(3), pages 448-459, July.
    19. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    20. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    21. Martin Spann & Bernd Skiera, 2009. "Sports forecasting: a comparison of the forecast accuracy of prediction markets, betting odds and tipsters," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 55-72.
    22. Rose D. Baker & Ian G. McHale, 2013. "Optimal Betting Under Parameter Uncertainty: Improving the Kelly Criterion," Decision Analysis, INFORMS, vol. 10(3), pages 189-199, September.
    23. Paul, Rodney J. & Weinbach, Andrew P. & Wilson, Mark, 2004. "Efficient markets, fair bets, and profitability in NBA totals 1995-96 to 2001-02," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(4), pages 624-632, September.
    24. Song, ChiUng & Boulier, Bryan L. & Stekler, Herman O., 2007. "The comparative accuracy of judgmental and model forecasts of American football games," International Journal of Forecasting, Elsevier, vol. 23(3), pages 405-413.
    25. ., 2018. "The euro market erodes US financial structure," Chapters, in: All Fall Down, chapter 2, pages 21-28, Edward Elgar Publishing.
    26. Siem Jan Koopman & Rutger Lit, 2015. "A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 167-186, January.
    27. Chu Dani & Wu Yifan & Swartz Tim B., 2018. "Modified Kelly criteria," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(1), pages 1-11, March.
    28. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    29. Hubáček, Ondřej & Šourek, Gustav & Železný, Filip, 2019. "Exploiting sports-betting market using machine learning," International Journal of Forecasting, Elsevier, vol. 35(2), pages 783-796.
    30. Chris Whitrow, 2007. "Algorithms for optimal allocation of bets on many simultaneous events," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(5), pages 607-623, November.
    31. Henry Allen Latané, 2011. "Criteria For Choice Among Risky Ventures," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 4, pages 35-46, World Scientific Publishing Co. Pte. Ltd..
    32. Pflug, Georg Ch. & Pichler, Alois & Wozabal, David, 2012. "The 1/N investment strategy is optimal under high model ambiguity," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 410-417.
    33. David Forrest & Robert Simmons, 2008. "Sentiment in the betting market on Spanish football," Applied Economics, Taylor & Francis Journals, vol. 40(1), pages 119-126.
    34. ., 2018. "Financial markets," Chapters, in: Law and Development, chapter 5, pages 93-125, Edward Elgar Publishing.
    35. Forrest, David & Simmons, Robert, 2000. "Forecasting sport: the behaviour and performance of football tipsters," International Journal of Forecasting, Elsevier, vol. 16(3), pages 317-331.
    36. Steven D. Levitt, 2004. "Why are gambling markets organised so differently from financial markets?," Economic Journal, Royal Economic Society, vol. 114(495), pages 223-246, April.
    37. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wunderlich, Fabian & Memmert, Daniel, 2020. "Are betting returns a useful measure of accuracy in (sports) forecasting?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 713-722.
    2. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    3. Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V. & Tai, Chung-Ching & Cheah, Eng-Tuck, 2019. "Improving prediction market forecasts by detecting and correcting possible over-reaction to price movements," European Journal of Operational Research, Elsevier, vol. 272(1), pages 389-405.
    4. Marc Garnica-Caparrós & Daniel Memmert & Fabian Wunderlich, 2022. "Artificial data in sports forecasting: a simulation framework for analysing predictive models in sports," Information Systems and e-Business Management, Springer, vol. 20(3), pages 551-580, September.
    5. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    6. Hubáček, Ondřej & Šourek, Gustav & Železný, Filip, 2019. "Exploiting sports-betting market using machine learning," International Journal of Forecasting, Elsevier, vol. 35(2), pages 783-796.
    7. Sperb, Luis Felipe Costa & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2019. "Keeping a weather eye on prediction markets: The influence of environmental conditions on forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 35(1), pages 321-335.
    8. J. James Reade & Carl Singleton & Alasdair Brown, 2021. "Evaluating strange forecasts: The curious case of football match scorelines," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
    9. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    10. Matej Uhr'in & Gustav v{S}ourek & Ondv{r}ej Hub'av{c}ek & Filip v{Z}elezn'y, 2021. "Optimal sports betting strategies in practice: an experimental review," Papers 2107.08827, arXiv.org.
    11. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    12. S Lessmann & M-C Sung & J E V Johnson, 2011. "Towards a methodology for measuring the true degree of efficiency in a speculative market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2120-2132, December.
    13. Babatunde Buraimo & David Peel & Rob Simmons, 2013. "Systematic Positive Expected Returns in the UK Fixed Odds Betting Market: An Analysis of the Fink Tank Predictions," IJFS, MDPI, vol. 1(4), pages 1-15, December.
    14. da Costa, Igor Barbosa & Marinho, Leandro Balby & Pires, Carlos Eduardo Santos, 2022. "Forecasting football results and exploiting betting markets: The case of “both teams to score”," International Journal of Forecasting, Elsevier, vol. 38(3), pages 895-909.
    15. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    16. Gross, Johannes & Rebeggiani, Luca, 2018. "Chance or Ability? The Efficiency of the Football Betting Market Revisited," MPRA Paper 87230, University Library of Munich, Germany.
    17. Franke, Maximilian, 2020. "Do market participants misprice lottery-type assets? Evidence from the European soccer betting market," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 1-18.
    18. Egon Franck & Erwin Verbeek & Stephan Nüesch, 2013. "Inter-market Arbitrage in Betting," Economica, London School of Economics and Political Science, vol. 80(318), pages 300-325, April.
    19. Merz, Oliver & Flepp, Raphael & Franck, Egon, 2021. "Sonic Thunder vs. Brian the Snail: Are people affected by uninformative racehorse names?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 93(C).
    20. Pascal Flurin Meier & Raphael Flepp & Egon Franck, 2021. "Are sports betting markets semistrong efficient? Evidence from the COVID-19 pandemic," Working Papers 387, University of Zurich, Department of Business Administration (IBW).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:39:y:2023:i:2:p:691-719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.